

In Confer

better lifting

LIFTING AND LASHING SYSTEMS

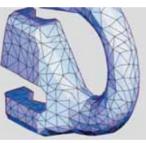
- Special Grade 10 -

Innovation and quality take first priority at RUD. We are always leading in decisive developments.

Examples in the lifting and lashing chains field:

1967: 1. Approval of quality class 5, H1-5 by the Berufsgenossenschaft (*Employers Liability Insurance Association).

1972: First chain factory to gain approval for the quality class 8, H1-8 by the BG* Technical Committee "Steel and Metal".


The first idea of a **mecano** system from RUD – foolproof connection of the correct chains and components, as well as suspension links. This idea became the standard at Ruhrkohle RAG (coal board mining).

1981: The first series of lifting points type RBS and RBG with a safety factor 4:1 in any direction.

1992: First chain factory to obtain certification for their quality assurance system acc. to **DIN/ISO 9001**.

1994: First chain factory to obtain approval of the BG* for their **VIP-special quality** with up to 50 % higher WLL than Grade 8.

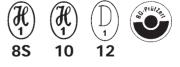
2002: The first universal lifting point – called PPS.

2006: First manufacturer who received the "Type Examination Certificate" from the Inspection and Certification authority PZNM of the Technical Commitee MO (*Employers Liability Insurance Association = BG), for VIP-round steel chains according to PAS 1061 (Publicity Available Specification according to the Standard DIN EN 818 Grade 10). As the First H1-10!

2007: RUD receives as the first chain manufacturer the approval for Grade 12 (D1-12) from the BG. World premiere of the strongest lifting chain ICE (Grade 12). Innovation leap in chain technology. Always one chain diameter thinner.

The passion of chain manufacturing!

The round steel chain link production in Unterkochen has been running for about 130 years. Producing chains for lifting, lashing, conveying, tire protection as well as snow and off-road chains.


Our headquarters and manufacturing plant is one of the most modern chain producing companies world wide.

Developed from a small chain forging company by the river Kocher, the RUD group has stood to the test of time to become a global player with approximately 800 motivated employees, subsidiaries and sales representatives around the world.

Almost 500 national and international protective clauses are the evidence for our progress.

The well established brand name RUD stands for quality, technical innovation and know how. Continuous research and development has enabled us not only to produce products meeting the highest expectations but also with consistent quality standards. Experience, diligence, ambition and passion are the virtues we manifest in order to remain favourite for our customers. With the above virtues in mind, RUD has successfuly entered a new century with the trust and satisfaction of our customers as our prime objective for the future.

What are tomorrow's concepts? This is one of the questions which RUD is trying to address while facing the challenge of consistently providing the best solutions to our customers.

BG and TÜV approved!

*BG = German Employers Liability Assurance Association.

CONTENTS

RUD Company Profile/Contents Pa	ge 2/3	
Benefits of the RUD-VIP system/applic. examples	4/5	
Assembly-fool proof/advantages	6/7	
Round steel link chain/WLL charts	8/9	
Masterlinks & Special Masterlinks	10/11	
Masterlinks & Special Masterlinks 2 leg	12/13	
Masterlinks & Special Masterlinks 3/4 leg	14/15	
- Cobra hook - Eye hook - Foundry hook	16/17	
Swivel adapter for hoists/Bale hook VIP clevis self locking hook/VIP Grab hook	18/19	
Multi shortening claw	20/21	
- Clevis shackle/Shackle/Isolating plate	22/23	
Rhombic link/Container hook Combi lock/Plug-in connector	24/25	
Balancer/Swivel/VRG-Connector	26/27	
- Control link/Mini mecano system	28/29	
Spreader bar fixed/ Spreader bar adjustable/Edge protection	30/31	
Examples for assembled slings/Spec. applications	32/33	
WLL chart RUD lifting and lashing point bolt on	34/35	
WLL chart RUD lifting and lashing points weld on	36/37	
Lashing systems/Load systems securing	38/39	
- Inspection/Service/Regular maintenance	40/41	
CD ROM/General information	42/43	
RUD industrial chains product groups	44	

VIP SLING CHAINS IN RUD SPECIAL QUALITY CLASS 10

VIP-proven since 1994 in the hardest applications!

Despite having the same chain diameter, an up to 30 % increase in the WLL in comparison to the hitherto highest quality class 8.

1Chain dimensions from 4 to 22 mm. WLL from 0.6 t to 20 t in single leg and up to 56 t in a 4-leg configuration with a balancer.

Distinctive fluorescent pink powder coating and clear "VIP" stamp on every chain link and component. Distinctive in comparison to other quality classes. Surface quality is comparable to a zinc plated surface

1Chain diameters 16, 20 and 22 mm in VIP special guality replace the 18, 22 and 26 mm chain diameters of quality grade 8. Smaller chain sizes, hence a considerable reduction of weight which facilitates easy handling.

1Multifunctional WLL identification tag: Owing to it's special patented shape, it facilitates simple inspection of the three wear criteria for sling chains (diameter, elongation of pitch and

1Heat indicator:

overload). The inspection data can be documented on the tag.

275 °C

300 °C

320 °C

250 °C

The pink powder coating changes its colour with temperatures exceeding 200°C. Chain should not be used after being subject to temperatures exceeding 400°C. At this temperature the VIP colour changes to a deep black with small bubbles, clearly indicating that it has been overheated.

225 °C

¹Master link collection for every crane hook:

The chain connecting link VRG is attached to the corresponding master link in a permanent but flexible way. The fool - proof clevis connection allways ensures that only the correct chain diameter can be fitted. The collection of master links range from the smallest VBK size for the high tensile hoist hooks up to crane hook No. 50 with Bi = 250 mm in 1 to 4 leg assembly versions.

The patented multi shortening claw can be fitted on the chain leg at any required position. No additional chain and coupling parts are required. The robust safety bolt with a spring prevents unintentional hooking out of the chain in both loaded and unloaded conditions. Ideal chain link shaped pocket support, thus no reduction in the WLL.

1VIP Cobra hook:

The compact design of the VIP Cobra hook with no protruding hook tip is far superior and safer than the common clevis sling hook. Supplied complete with a forged and tempered safety latch that locks into the hook tip protects against lateral bending. The safety latch is supported by a triple coiled double leg. The enlarged hook tip prevents misuse. Wear edges on both sides of the hook protect against abrasion of the chain when hauling the chain assemblies. Gauge marks on the hook enable easy inspection for the elongation of the width of the hook opening.

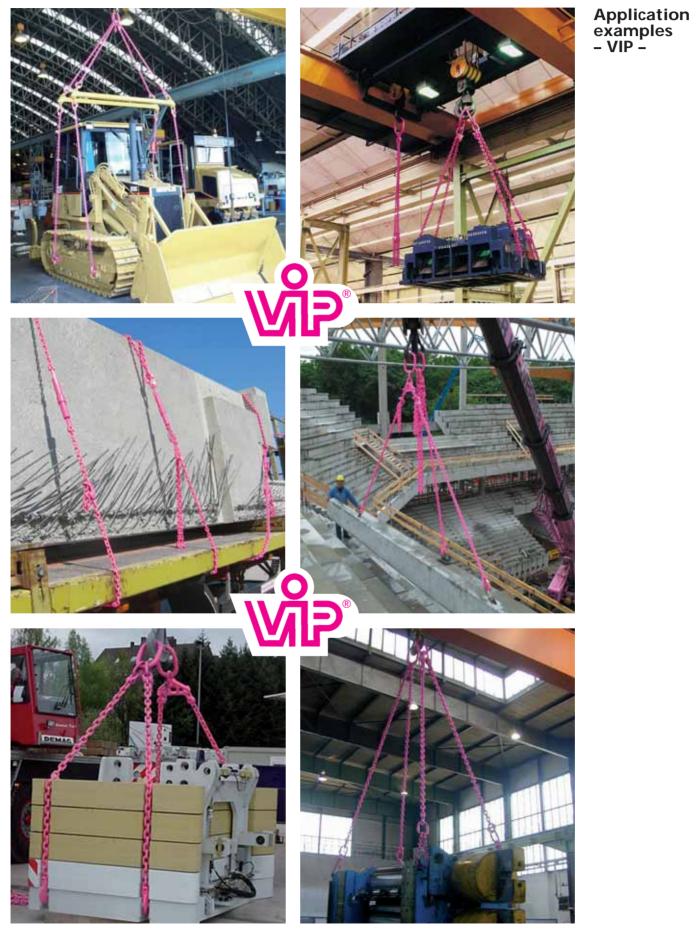
VIP automatic clevis hook:

Extremely robust design. The hook locks automatically when lifting the load and can only be opened by activating the protected unlocking lever at the back of the hook. No protruding hook tip. Large mouth width size F.

1VIP shortening hook: According to pr. EN1677-7:

With no reduction of WLL and a thickened hook tip to avoid misuse e.g. incorrect fitting of the chain. Ideal chain support facilitated by the calibrated lugs. The U-bend insertion slot protects against accidental chain disengangement.

World wide unique: The VIP Mecano System with the 4 mm chain.


Mecano System "in miniature'

4 mm chain and

components!

VIP-Quality – "Made in Germany!"

Subject to technical alternations!

YOUR BENEFITS...

VIP Stamping – on every chain link

VIP-stamped chains are manufactured with smaller tolerances in the inner width (size W1) and are coated with the fluorescent colour pink. In connection with the VIP stamped, pink coloured components, whose special clevis design has been perfectly harmonised, a distinctive chain connection is realised.

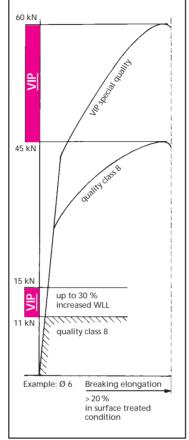
🕅 10 or 8 S

The approval of RUD's special quality VIP by the BG* is documented in short chain link intervals with the following: H1 refering to the manufacturer's number i.e 1 = RUD and 8 S or 10 meaning Grade 10.

Verification of quality

At regular intervals, the chains are stamped with a serial and batch number. This identification ensures a continuous record tracking of the manufacturing and proof load data even after a period of 10 years. After all we stick to our VIP quality.

Patented heat indicator


In high temperature environments the special fluorescent pink powder coating permanently changes its colour. Above 400°C the colour changes permanently to black. If this happens the chain assembly should be taken out of service (refer to page 7). The geometric construction and tolerances of the VIP chains are aligned to a higher quality class. On request, **Corrud DS**, a 20 times more red rust resistant component than zinc plating, can be supplied.

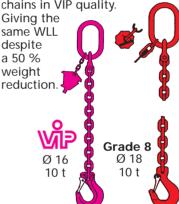
VIP Grade 10

A consequential enhancement of the RUD – Mecano system with quality grade 8, which has stood to the test of time for over 30 years. V – distinguished, I – in, P – pink.

Using the patented VIP identification tag, the chain can easily be inspected for wear and pitch elongation. Please refer to pages 8 and 40.

BG* = Employers Liability Insurance Association.

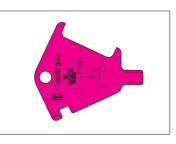
TheThe highly qualitative VIP chains and components are provided with a **duplex surface** protection. This comprises of two processes i.e: Pre-treatment and pink powder coating. Due to this two process procedure, a relatively better surface protection is achieved in comparison to zinc plating.


The highly dynamic VIP-Mecano system and chains achieves a dynamic strength higher than the standard values. Tested with over 20,000 load cycles and with a factor ratio of 1.5 of their actual WLL.

An up to 30 % increase in the WLL in comparison to quality class 8

Material CrNiMo alloy steel, specially tempered, high toughness. Minimum breaking elongation ≥ 25 % in natural black, ≥ 20 % in pink coated. Less sensitive to notching and hydrogen embrittlement than quality class 8. Bending tests acc. standard DIN EN 818-2, bending min f = 0.8 x d is by far exceeded. Ratio of WLL : proof load : breaking load is given by 1 : 2.5 : 4.

Owing to a special heat treatment procedure developed by RUD, the highly dynamic RUD – VIP-chains are less sensitive to mechanical abrasion and damages. Hence an increased life expectancy is achieved.


Quality class 8 chains whose nominal diameter exceeds 18 mm can be substituted by a one size less nominal diameter chains in VIP quality.

RUD chains and components are in accordance with DIN EN 818 and 1677 with a dynamic loading of more than 20,000 load cycles.

The BG* recommends: At high dynamic applications with high load cycles (permanent operation), the WLL must be reduced, e.g. by using a larger chain diameter.

Subject to technical alternations!

FOOL-PROOF »IN PINK«

FOOL-PROOF »IN STAMPING«

FOOL-PROOF »IN PINK+STAMPING«

The proven clevis connection system has been further enhanced with the new VIP range. With it's dimensional adjustments and colour (VIP chains and components in pink) arrangement of the chains and the components, a fool-proof assembly is assured.

Clevis dimension "X" avoids the connection of a larger VIP chain. VIP chains are manufactured with tighter tolerances in the inner width (size W1). The connection bolt diameter "size Y" avoids the connection of the next smaller VIP chain size.

Result:

Only chains and components with the same WLL are distinctively assembled together.

Attention:

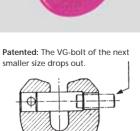
VIP chains (R) 8S or 10 must only be connected with VIP components (R) 8S or 10. Follow RUD operating manual and user instructions! Use only original VIP spare parts.

The German Employers Liability Assurance Association requires:

1.) Chain slings of Grade 10 must not be used in combination with chains and components from different manufacturers.

2.) Components which are recognized as Grade 10, must not be mixed with Grade 8 sling components.

BRUD'


+point

Application examples of the versatile VIP system.

Assembly

VIP-**Fool-proof Mecano** assembly

Slot of the tensioning sleeve must be visible facing to the front! The tensioning sleeve must be used only once.

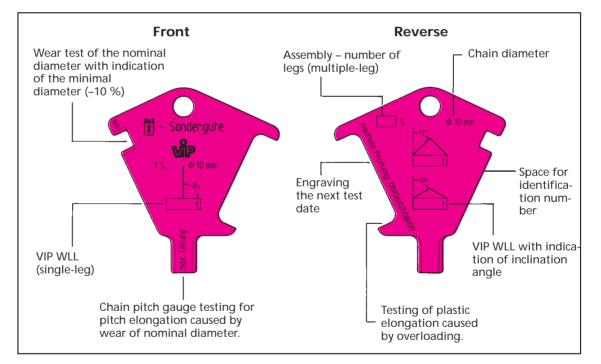
The special fluorescent VIP powder coating permanently shows the temperature to which the VIP chain has been exposed.

Operated in the prohibited temperature ranges i.e. above 400°C, the pink colouration turns black with bubles on the surface. Replace the VIP chains or return them to the supplier for repair.

VIP heat indication European

patent EP 677681

VIP round steel link chain Grade 10


Size d in mm Ø	4	6	8	10	13	16	20	22
Pitch P in mm	12	18	24	30	39	48	60	66
inside, width W1 bi min. mm	5.2	7.8	10.4	13	17	21	26	28.6
WLL in t	0.63	1.5	2.5	4.0	6.7	10	16	20
Proof load MPF min. kN	15.7	37.5	62.5	100	166	250	395	500
Breaking load BF min. kN	25	60	100	160	265	400	630	800
Weight kg/m	0.36	0.85	1.5	2.4	4.0	6.0	9.5	12.3
Surface:	Duplex	orotectio	n = pre-1	treatmen	t + pink	powder	coating	
Order no:	7984399	7100477	7100478	7100479	7100480	7100481	7983689	7100482
Surface:	Cori	rud-DS-b	lack					
Order no:	7987349	7987591	7986226					

Minimal ultimate elongation: natural black \geq 25 %, Pink \geq 20 %

Stamped: VIP identification stamped in every chain link, manufacturing number and the BG approval stamp H1

VIP identification tag with an integrated chain testing gauge EP 610611

Testing wear of nominal diameter

Testing for plastic elongation caused by overload

Testing for pitch elongation caused by wear of nominal diameter

Subject to technical alternations!

VIP Grade 10 WLL in tonnes

+point

of single and multi-ple leg chain slings with different angles of inclination and symmetrical loading of the legs.

Ø4mm mink see page 29

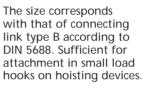
In case of choke hitch applications, reduce WLL by 20 %.

A reduction of 20 % for the choke hitch and bundling (sharp edge) is already within the calculation.

3- and 4-leg 1-leg 2-leg endless endless chain sling Nominal size in choke of sling chain hitch in mm Inclination- $\measuredangle \beta$ 0° 0-45° > 45-60° 0-45° > 45-60° _ Load factor 1 1.4 2.1 1.5 1 1.6 Ø 4 0.63 0.88 0.63 1.32 0.95 1 1.5 1.5 2.25 2.1 3.15 2.4 6 8 2.5 3.5 2.5 5.25 3.75 4 10 4.0 5.6 4.0 8.4 6.0 6.4 13 6.7 9.5 6.7 14 10 10.6 16 10 14 10 21 15 16 20 16 22.4 16 33.6 24 25.6 22 20 28 20 42* 30 32 In case of **unsymmetrical** loading, the load factors must be reduced by 50 %. 1º

Please refer to RUD Multi master with angle measuring device and CD-ROM * in connection with balancer up to 56 t (see page 26).

		Endles	s chain		Ch	oke hit	ch
Nominal size of sling chain in mm	And And	J. Sava		Particular			Q
	sir	ngle	dou	ble	single	dou	uble
	0–45°	> 45–60°	0-45°	> 45–60°	0°	0-45°	> 45–60°
Load factor	1.1	0.8	1.7	1.2	0.8	1.1	0.8
Ø 4	0.69	0.5	1.1	0.75	0.5	0.69	0.5
6	1.65	1.2	2.55	1.8	1.2	1.65	1.2
8	2.75	2	4.25	3	2	2.75	2
10	4.4	3.2	6.8	4.8	3.2	4.4	3.2
13	7.5	5.3	11.2	8	5.3	7.5	5.3
16	11	8	17	12	8	11	8
20	17.6	12.8	27.2	19.2	12.8	17.6	12.8
22	22	16	34	24	16	22	16
		In case o		e trical load modified a	ing, the loa s follows:	d factors	
Temperature	the perm	ing sling ch hissible WLL load in %	has to be	reduced.	beyond 200 of:	°C (refer to	o page 7),
∎ °C	– 40° up t	o + 200 °C	above 200	0° – 300 °C	above 300° – 380 °C		
۲	100	0 %	90) %		60 %	


VIP Master link for single leg VBK1

for smaller load hooks

VBK 1 master link with an in all multi-directional movable welded VRG connector. Thus ensuring that the correct chain diameter and number of legs can be connected. Complete identification tag with an integrated testing gauge. Connecting bolt and tensioning sleeve are pre-assembled.

Can also be supplied as end link (VB-1) without VIP identification tag.



Chain	WLL t	Туре		А	В	С	Т	kg/pc.	Ref. N	ю.
6	1.5	VBK 1 – 6	(VB 1 – 6)	13	25	54	82	0.5	71 00 675	(71 00 220)
8	2.5	VBK 1 – 8	(VB 1 – 8)	16	34	70	107	0.7	71 00 676	(7100221)
10	4	VBK 1 – 10	(VB 1 – 10)	18	40	85	131	1.1	71 00 677	(71 00 222)
13	6.7	VBK 1 – 13	(VB 1 – 13)	22	50	115	174	2.0	71 00 678	(71 00 223)
16*	10	VBK 1 – 16	(VB 1 – 16)	26	65	140	211	3.3	71 00 679	(7100224)
20*	16	VBK 1 – 20	(VB 1 – 20)	32	75	170	264	7.6	71 04 092	(7104093)
22*	20	VBK 1 – 22	(VB 1 – 22)	36	110	200	294	9.0	71 00 680	(71 02 060)

VIP Master link for single leg VAK 1

for standard crane hooks e.g. DIN 15401

VBK 1 master link with an in all multi-directional movable welded VRG connector. Thus ensuring that the correct chain diameter and number of legs can be connected. Complete identification tag with an integrated testing gauge. Connecting bolt and tensioning sleeve are pre-assembled.

The size corresponds with that of connecting link type A according to DIN 5688.

Master link VAK1 can be used for crane hooks up to No. DIN 15401. – standard size hooks

Size:	6 -	No. 2.5	8 –	No. 2.5
		No. 5	13 –	
	16 –	No. 8	20 –	No. 25
	22 –	No. 25		

Can also be supplied as **end link (VA-1)** without identification tag.

Chain	WLL t	Туре		Α	В	С	Т	kg/pc.	Ref.N	0
6	1.5	VAK 1 – 6	(VA 1–6)	13	60	110	138	0.6	71 00 681	(7100237)
0	1.5	VAR I - U	(VAI=0)	15	00	110	150	0.0	7100001	(1100237)
8	2.5	VAK 1 – 8	(VA 1–8)	16	60	110	147	0.9	71 00 682	(7100238)
10	4	VAK 1 – 10	(VA 1–10)	18	75	135	181	1.4	71 00 683	(7100239)
13	6.7	VAK 1 – 13	(VA 1–13)	22	90	160	218	2.4	71 00 684	(7100240)
16*	10	VAK 1 – 16	(VA 1–16)	26	100	180	250	3.7	71 00 685	(7100241)
20*	16	VAK 1 – 20	(VA 1 – 20)	40	180	340	434	14.7	71 04 089	(7104090)
22*	20	VAK 1 – 22	(VA 1 – 22)	45	180	340	434	16.5	71 00 686	(7102092)

*Attention: Master link size 16/20/22 with a special identification tag (refer to page 14). A testing gauge will be additionally supplied with the master link sizes 16/20/22 Subject to technical alternations!

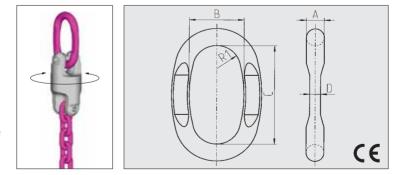
VSAK 1

VSAK1 master link is supplied complete with a welded VRG connector. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached.

Connecting bolt and tensioning sleeve are pre-assembled.

Owing to a larger gradation of the inner width "**B**" of the VSAK, improper use (BGR 500) is almost eliminated and wear of the crane hook is minimised. Additional connective components for over size hooks are not necessary.

LIFTING MEANS +point **VIP** special master link 1-leg


		for standard hooks up to.		
VSAK – size B =	190	for standard hooks up to.	No. 32	DIN 15401
VSAK – size B =	250	for standard hooks up to.	No. 50	DIN 15401

Chain	WLL t	Туре	Α	В	С	Т	kg/pc.	Ref. No.
6	1.5	VSAK 1 – 6/140	18	140	260	342	1.7	71 00 687
8	2.5	VSAK 1 – 8/140	22	140	260	367	3.1	71 00 688
10	4	VSAK 1 – 10/140	26	140	260	391	4.4	71 00 689
13	6.7	VSAK 1 – 13/140	32	140	260	433	7.6	71 00 690
16*	10	VSAK 1 – 16/140	32	140	260	471	8.1	71 00 691
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
8	2.5	VSAK 1 – 8/190	22	190	350	457	4.0	71 00 692
10	4	VSAK 1 – 10/190	26	190	350	481	6.0	71 00 693
13	6.7	VSAK 1 – 13/190	32	190	350	523	9.9	71 00 694
16*	10	VSAK 1 – 16/190	36	190	350	560	13.5	71 00 695
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
10	4	VSAK 1 – 10/250	36	250	460	590	12	71 00 696
13	6.7	VSAK 1 – 13/250	36	250	460	634	13	71 00 697
16*	10	VSAK 1 – 16/250	40	250	460	670	14	71 00 698
20*	16	VSAK 1 – 20/250	45	250	460	724	25	71 04 100
22*	20	VSAK 1 – 22/250	51	250	460	754	33	71 00 699

Forged Special-Link (in pink) for small load hooks, extreme lightweight construction - centre flattening respective to the corresponding chain diameter.

Fits to the Universal-Swivel-PowerPoint from page 27 or to the Lifting Point PowerPoint-B.

Additionally pay attention to the correct WLL assignment while assembling

alternatior	Chain	WLL t	Туре	А	В	С	D	R_1	kg/pc.	Ref. No.	
lterr	4	0.63	PP 0.63t - B	9	35	65	4	15	0.1	79 89 531	-
	6	1.5	PP 1.5t - B	11	35	65	6	15	0.14	85 02 173	\leq
technical	8	2.5	PP 2.5t - B	13	40	75	8	18	0.2	85 02 174	
to te	10	4	PP 4t - B	16	45	95	10	20	0.32	85 02 175	
-	13	6.7	PP-VIP Ø 13-B	21	60	130	13	25	1.02	85 02 176	
Subject	16	10	PP-VIP Ø 16-B	24	65	140	16	28	1.4	85 02 177	

VIP special master link 1-leg PP-X-B - lightweight construction -

ŝ
0
H
<u>-</u>
5
te
ali
Ω,
_
S
0
1
7
÷
2
1
۰.
0
+
+
0
U
-
4

VIP-Master link 2-leg VBK 2

for smaller load hooks

VBK 2 master link is supplied with two welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached. Connecting bolt and tensioning sleeve are pre-assembled.

The size corresponds with that of connecting link type B according to DIN 5688. Sufficient for attachment to small load hooks on hoisting devices.

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	2.1/1.5	VBK 2 – 6	13	25	54	82	0.5	71 00 700
8	3.5/2.5	VBK 2 – 8	16	34	70	107	0.9	71 00 701
10	5.6/4.0	VBK 2 – 10	18	40	85	131	1.4	71 00 702
13	9.5/6.7	VBK 2 – 13	22	50	115	174	2.7	71 00 703
16*	14/10	VBK 2 – 16	26	65	140	211	4.4	71 00 704
20*	22.4/16	VBK 2 – 20	32	75	170	264	11	71 04 097
22*	28/20	VBK 2 – 22	36	110	200	294	13.7	71 00 705

VIP-**Master link** 2-leg VAK 2

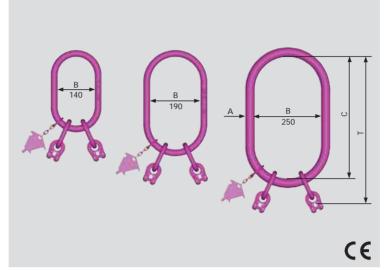
for standard crane hooks

VBK 2 master link is supplied with two welded VRG VDN 2 master link is supplied with two welded VRG connectors. Therefore only the correct chain dia-meter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached. Connecting bolt and tension-ing sleeve are pre-assembled.

The size corresponds with that of connecting link type A according to DIN 5688.

Can be used for crane hooks up to No. DIN 15401. simple hook.

Size:	6 -	No. 2.5	8 -	No. 5
	10 –	No. 6	13 –	No. 8
	16 –	No. 10	20 –	No. 25
	22 –	No. 25]	


lo. 2.5	8 –	No. 5	
lo. 6		No. 8	
lo. 10	20 –	No. 25	
lo. 25			

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.	SC .
6	2.1/1.5	VAK 2 – 6	13	60	110	138	0.7	71 00 706	natior
8	3.5/2.5	VAK 2 – 8	18	75	135	172	1.4	71 00 707	alterr
10	5.6/4.0	VAK 2 – 10	22	90	160	206	2.3	71 00 708	i nical a
13	9.5/6.7	VAK 2 – 13	26	100	180	238	3.9	71 00 709	techni
16*	14/10	VAK 2 – 16	32	110	200	270	6.6	71 00 710	tote
20*	22.4/16	VAK 2 – 20	40	180	340	434	16	71 04 095	
22*	28/20	VAK 2 – 22	45	180	340	434	20	71 00 711	Subject

VSAK 2 master link is supplied with two welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached.

Connecting bolt and tensioning sleeve are pre-assembled.

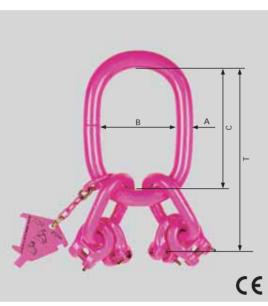
LIFTING MEANS +point VIP-

wip use

special master link 2-leg VSAK 2

Owing to a larger gradation of the inner width "B" of the VSAK, improper use (BGR 500) is almost eliminated and wear of the crane hook is minimised. Additional connective components for over size hooks are not necessary.

VSAK – Size B =	140	for standard hooks up to	No. 16	DIN 15401
VSAK – Size B =	190	for standard hooks up to	No. 32	DIN 15401
VSAK – Size B =	250	for standard hooks up to	No. 50	DIN 15401


Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	2.1/1.5	VSAK 2 – 6/140	18	140	260	342	2.3	79 94 070
8	3.5/2.5	VSAK 2 – 8/140	22	140	260	367	3.5	79 94 071
10	5.6/4.0	VSAK 2 – 10/140	26	140	260	391	5.2	79 94 072
13	9.5/6.7	VSAK 2 – 13/140	32	140	260	433	9.2	79 94 073
16*	14/10	VSAK 2 – 16/140	32	140	260	471	12.5	79 94 074
Chain	WLL t	Туре	Α	В	С	Т	kg/pc.	Ref. No.
8	3.5/2.5	VSAK 2 – 8/190	22	190	350	457	4.3	79 94 075
10	5.6/4.0	VSAK 2 – 10/190	26	190	350	481	6.5	79 94 076
13	9.5/6.7	VSAK 2 – 13/190	32	190	350	523	10.6	79 94 077
16*	14/10	VSAK 2 – 16/190	36	190	350	560	15.6	79 94 078
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
10	5.6/4.0	VSAK 2 – 10/250	36	250	460	591	12.8	79 94 079
13	9.5/6.7	VSAK 2 – 13/250	36	250	460	634	14.9	79 94 080
16*	14/10	VSAK 2 – 16/250	40	250	460	671	20.5	79 94 081
20*	22.4/16	VSAK 2 – 20/250	45	250	460	724	32.5	79 94 083
22*	28/20	VSAK 2 – 22/250	51	250	460	754	43	79 94 084
-								

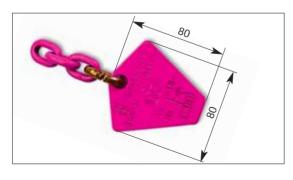
*Attention: Master link size 16/20/22 with a special identification tag (refer to page 14). A testing gauge will be additionally supplied with the master link sizes 16/20/22

VIP-Master link 4-leg VAK 4

VAK 4 leg master link is supplied with four welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached. Connecting bolt and tensioning sleeve are pre-assembled.

The size corresponds with that of connecting link type A and B according to DIN 5688.

Can be used for crane hooks up to $\fbox{No.}$ acc. to DIN 15401.


Size:	6 -	No. 5	8 -	No. 6 No. 10
	10 –	No. 8	13 –	No. 10
	16 -	No. 16	20 –	No. 32
	22 –	No. 32		

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	3.1/2.2	VAK 4 – 6	18	75	135	217	1.5	71 00 742
8	5.2/3.7	VAK 4 – 8	22	90	160	268	2.8	71 00 743
10	8.4/6.0	VAK 4 – 10	26	100	180	311	4.6	71 00 744
13	14/10	VAK 4 – 13	32	110	200	373	8.3	71 00 745
16*	21/15	VAK 4 – 16	36	140	260	470	13.7	71 00 746
20*	33.6/24	VAK 4 – 20	51	190	350	614	39	71 04 181
22*	42/30	VAK 4 – 22	51	190	350	644	42	71 00 747

*Attention: Master link size 16/20/22 with a special identification tag (refer to page 14). A testing gauge will be additionally supplied with the master link sizes 16/20/22

3 leg master links VAK 3 and VSAK 3 do have the same reference numbers as 4 leg master links. No separate stock exists.

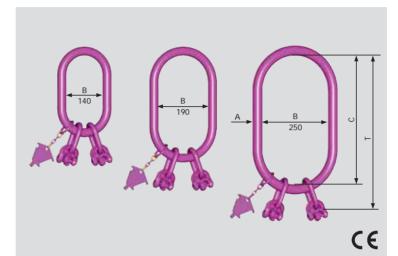
VIP-Spare parts VKZA

VIP identification tag for chain diameterDiameterRef. No.Ø 16 mm/20 mm/22 mm79 89 739

VKPL

VIP identification tag as *chain testing gauge, for diameters 16 mm/20 mm/22 mm

Chain	Туре	Ref. No.
16	VKPL-16	71 00 672
20	VKPL-20	71 04 045
22	VKPL-22	71 01 832


*Comes as separate item with each Masterlink shipment of these sizes.

Subject to technical alternations!

VSAK 4 master link is supplied with four welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached.

Connecting bolt and tensioning sleeve are pre-assembled.

For the respective crane hooks refer to page 11.

LIFTING MEANS

VIP-Special master link 4-leg VSAK 4

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	3.1/2.2	VSAK 4 – 6/140	22	140	260	342	3.3	71 00 748
8	5.2/3.7	VSAK 4 – 8/140	26	140	260	367	5.0	71 00 749
10	8.4/6.0	VSAK 4 – 10/140	32	140	260	391	7.9	71 00 750
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	3.1/2.2	VSAK 4 – 6/190	22	190	350	432	3.6	71 00 751
8	5.2/3.7	VSAK 4 – 8/190	26	190	350	457	5.5	71 00 752
10	8.4/6.0	VSAK 4 – 10/190	32	190	350	481	9.2	71 00 753
13	14/10	VSAK 4 – 13/190	36	190	350	523	13.5	71 00 754
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
10	8.4/6.0	VSAK 4 – 10/250	36	250	460	591	14.8	71 00 755
13	14/10	VSAK 4 – 13/250	40	250	460	634	20.4	71 00 756
16*	21/15	VSAK 4 – 16/250	51	250	460	671	34.5	71 00 757
20*	33.6/24	VSAK 4 – 20/250	54	250	460	754	45.5	**79 93 210
22*	42/30	VSAK 4 – 22/250	56	250	460	763	53.6	**79 93 211

*Attention: Master link size 16/20/22 with a special identification tag (refer to page 14). A testing gauge will be additionally supplied with the master link sizes 16/20/22 **with VVS-U-connection

VIP ide	VIP identification tag with integrated testing						
gauge.							
Chain	Туре	Ref. No.					
4	VKZA-4	79 87 054					
6	VKZA-6	71 00 804					
8	VKZA-8	71 00 805					
10	VKZA-10	71 00 806					
13	VKZA-13	71 00 807					

VG bolts with tensioning sleeves

VG DOI	is with tensioning sleeve	5
Chain	Туре	Ref. No.
4	VG-4/retaining pin 4	79 84 300/51 299
6	VG-6/retaining pin 6	71 01 594/59 289
8	VG-8/retaining pin 8	71 01 595/57 490
10	VG-10/retaining pin 10	71 01 596/59 021
13	VG-13/retaining pin 13	71 01 597/59 022
16	VG-16/retaining pin 16	71 01 598/59 023
20	VG-20/retaining pin 20	71 02 717/59 386
22	VG-22/retaining pin 22	71 01 599/59 387

VG/SP

VIP-

spare parts VKZA

R

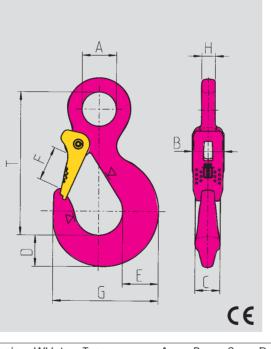
VIP-Cobra hook with safety latch VCGH

Extremely robust improved version. No protruding hook tip. Forged safety latch engages into the tip of

the hook and is thus protected against lateral bending.

A triple-coiled, double-leg spring in stainless steel. Thickened tip of the hook prevents misuse. Wearing edges on both sides.

Gauge marks for measuring the width of the hook opening.


Fmax. = Maximum distance between the gauge marks.

WLL t	Туре	А	В	С	D	F	F max.	G	Т	kg/pc.	Ref. No.
1.5	VCGH 6	38	22	16	20	25	45	72	76	0.4	71 00 498
2.5	VCGH 8	50	28	20	28	30	52	95	97	0.9	71 00 499
4.0	VCGH 10	60	36	26	36	35	65	118	108	1.5	71 00 500
6.7	VCGH 13	76	46	30	37	40	73	135	126	2.7	71 00 501
10.0	VCGH 16	83	56	36	49	48	87	161	152	4.3	71 00 502
16.0	VCGH 20	112	68	50	69	63	114	218	195	10.0	71 03 385
20.0	VCGH 22	117	78	50	74	63	114	223	198	11.5	71 01 603
	1.5 2.5 4.0 6.7 10.0 16.0	1.5 VCGH 6 2.5 VCGH 8 4.0 VCGH 10 6.7 VCGH 13 10.0 VCGH 16 16.0 VCGH 20	1.5 VCGH 6 38 2.5 VCGH 8 50 4.0 VCGH 10 60 6.7 VCGH 13 76 10.0 VCGH 16 83 16.0 VCGH 20 112	1.5 VCGH 6 38 22 2.5 VCGH 8 50 28 4.0 VCGH 10 60 36 6.7 VCGH 13 76 46 10.0 VCGH 16 83 56 16.0 VCGH 20 112 68	1.5 VCGH 6 38 22 16 2.5 VCGH 8 50 28 20 4.0 VCGH 10 60 36 26 6.7 VCGH 13 76 46 30 10.0 VCGH 16 83 56 36 16.0 VCGH 20 112 68 50	1.5 VCGH 6 38 22 16 20 2.5 VCGH 8 50 28 20 28 4.0 VCGH 10 60 36 26 36 6.7 VCGH 13 76 46 30 37 10.0 VCGH 16 83 56 36 49 16.0 VCGH 20 112 68 50 69	1.5 VCGH 6 38 22 16 20 25 2.5 VCGH 8 50 28 20 28 30 4.0 VCGH 10 60 36 26 36 35 6.7 VCGH 13 76 46 30 37 40 10.0 VCGH 16 83 56 36 49 48 16.0 VCGH 20 112 68 50 69 63	1.5 VCGH 6 38 22 16 20 25 45 2.5 VCGH 8 50 28 20 28 30 52 4.0 VCGH 10 60 36 26 36 35 65 6.7 VCGH 13 76 46 30 37 40 73 10.0 VCGH 16 83 56 36 49 48 87 16.0 VCGH 20 112 68 50 69 63 114	1.5 VCGH 6 38 22 16 20 25 45 72 2.5 VCGH 8 50 28 20 28 30 52 95 4.0 VCGH 10 60 36 26 36 35 65 118 6.7 VCGH 13 76 46 30 37 40 73 135 10.0 VCGH 16 83 56 36 49 48 87 161 16.0 VCGH 20 112 68 50 69 63 114 218	1.5 VCGH 6 38 22 16 20 25 45 72 76 2.5 VCGH 8 50 28 20 28 30 52 95 97 4.0 VCGH 10 60 36 26 36 35 65 118 108 6.7 VCGH 13 76 46 30 37 40 73 135 126 10.0 VCGH 16 83 56 36 49 48 87 161 152 16.0 VCGH 20 112 68 50 69 63 114 218 195	1.5 VCGH 6 38 22 16 20 25 45 72 76 0.4 2.5 VCGH 8 50 28 20 28 30 52 95 97 0.9 4.0 VCGH 10 60 36 26 36 35 65 118 108 1.5 6.7 VCGH 13 76 46 30 37 40 73 135 126 2.7 10.0 VCGH 16 83 56 36 49 48 87 161 152 4.3 16.0 VCGH 20 112 68 50 69 63 114 218 195 10.0

Cobraeye hook with safety latch VCÖH

For special wire rope slings, VIP chain slings, PowerPoint combinations or the universal swivel (refer to page 27).

Extreme durable, compact design, with pink

powder coating. No protruding hook tip. The forged, quenched and tempered safety latch,

engages into the hook tip. Therefore protected against lateral bending. Triple coiled, stainless steel double leg spring. Thickened hook tip to avoid improper use. Wear edges on both sides.

Gauge marks for measuring the width of the hook opening.

F_{max.} = Distance between the gauge marks, see VCGH data above.

Chain WLL t D Туре Α В С Ε F G Н Т kg/pc. Ref. No. 4 0.63 VCÖH 4 18 18 12 13 14 18 52 8 75 0.14 85 02 323 6 1.5 VCÖH 6 24 22 16 22 24 25 73 11 98 0.5 85 02 203 2.5 VCÖH 8 95 85 02 142 8 32 28 20 28 31 30 13 126 0.8 4.0 VCÖH 10 85 02 145 10 38 36 26 36 39 35 118 17 150 1.6 13 6.7 VCÖH 13 48 45 30 37 48 40 135 21 170 2.9 85 02 204 16 10 VCÖH 16 63 56 36 49 58 50 161 27 208 4.2 85 02 146

alternations! technical 5 Subject

Considerably larger mouth width than VCGH, but without a safety latch. Use only where unintentional unhooking is impossible.

Inappropriate for overhead lifting!

When using foundry hooks, special attention must be paid and a risk assessment must be carried out before using.

Robust cross section (size C/G) is resistant against increased lateral forces. Specially designed wearing edges to protect the chain link, compare the dimension "E". Connecting bolt and tensioning sleeve are preassembled.

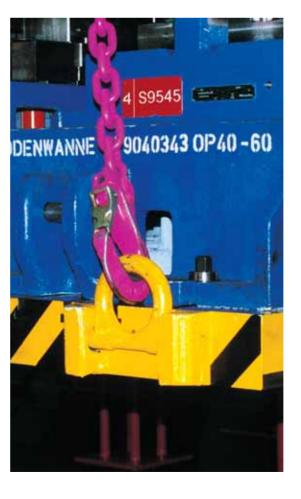
Gauge marks for measuring the width of the hook opening.

Fmax. = Maximum distance between marked points.

	E,
G	

Society LIFTING MEANS

VIP-Foundry hook VWH



Chain	WLL t	Туре	А	В	С	D	Е	F	F max.	G	Т	kg/pc.	Ref. No.
6	1.5	VWH 6	30	22	18	30	22	50	63	22	87	0.5	71 00 210
8	2.5	VWH 8	40	29	26	40	29	64	81	30	115	0.9	71 00 211
10	4.0	VWH 10	46	37	30	50	36	76	96	37	130	1.7	71 00 212
13	6.7	VWH 13	51	45	37	64	46	90	115	51	168	3.0	71 00 213
16	10.0	VWH 16	64	56	40	75	56	100	129	58	190	5.7	71 00 214
20*	16	VWHÖ 20	86	70	65	107	30	127		70	265	13.0	79 88 985
22*	20	VWHÖ 22	96	80	71	122	34	136		80	305	19.0	79 88 986

*eye type, chain connection with VVS

	Chain	Туре	kg/pc.	Ref. No.
isuc	4	Si-Set VMH-4	0.04	79 87 901
natio	6	Si-Set VCGH-6	0.04	71 00 299
alternations	8	Si-Set VCGH-8	0.07	71 00 300
	10	Si-Set VCGH-10	0.09	71 00 301
chni	13	Si-Set VCGH-13	0.15	71 00 302
to technical	16	Si-Set VCGH-16	0.24	71 00 303
Subject	20	Si-Set VCGH-20	0.40	71 01 604
Sub	22	Si-Set VCGH-22	0.40	71 01 604

Safety latch set for VCGH

Can also be used as spare part for the RUD GSH 80 hook!

Hoist Swivel adapter HWA

1Supplied complete with original Demag ball bearing 1Manufactured from hightempered special steel 1tested acc. to EN 1677 1suitable for single leg snatch blocks and for double leg lower blocks 1suitable for all RUD clevis Mecano components

Application examples:

for Demag

hoists

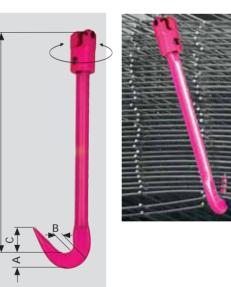
*with VB-link

2		[]
5	*with VVGSCH	•

¢.

for Demag-PK-hoists

TOT Demag-DR-I	101313						101313	
Туре		WLL	Clevis	kg/pc.	Ref. No.	Туре	WLL	Ref. No.
		t	connection				kg	
HWA 6 DK 400	DC 1+2 up to 250 kg	0.4	6	0.15	7985570	HWA 6 PK (1)	250	51 287
HWA 6 DK 800	DC 5 up to 500 kg	0.8	6	0.30	7985571	HWA 6 PK (2)	500	51 288
HWA 8 DK 800	DC 5 up to 500 kg	0.8	8	0.40	7985572	HWA 8 PK (2)	500	51 293
HWA 8 DK 1250	DC 10+20 up to 1000 kg	1.25	8	0.55	7985573	HWA 8 PK (5)	1000	51 294
HWA 10 DK 2500	DC 20* 1000-2000 kg	2.5	10	0.90	7985574	HWA 10 PK (10)	2000	51 295
HWA 13 DK 5000		5.0	13	1.3	7985575			


*with

VCGH

*only in combination with Demag DK bottom block

VIP-Bale hook VBMH with ballbearing swivel

H

The bevelling on the back of the hook simplifies the horizontal hook insertion between the bales. The clevis connection enables a direct chain connection and the integrated ball bearing swivel prevents the chain from automatically spinning.

Suitable only for the transport of bundled bale packages.

Not suitable for choke lifts!

Inappropriate for overhead lifting!

When using bale hooks, special attention must be paid and a risk assessment must be carried out before using.

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
8	2.5	VBMHWA – 8	35	18	61	381	2.5	79 91 478
10	4.0	VBMHWA -10	35	18	61	381	2.5	79 89 017

Extremely robust and approved design. Hook automatically locks when lifting the load. Can only be opened by activating the protected unlocking lever on the back of the hook.

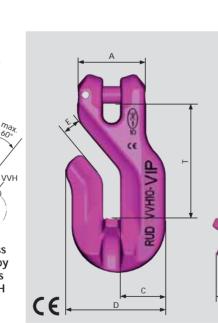
unlocking lever on the back of the hook. No protruding hook tip. Large mouth width size F. Wearing edges > dimension B < on both sides of the hook protect the chain against abrasion when the assembly is dragged or hauled. Connecting bolt and tensioning sleeve are pre-

assembled.

Safety latch spare parts available on demand.

LIFTING MEANS

VIP-Self-locking hook VAGH


COLO-
+point
ő
Ģ
Â
R
$\mathbf{\tilde{S}}$

ฬ่อ

use เพ่ื∍

Chain	WLL t	Туре	А	В	С	D	Е	F	Т	kg/pc.	Ref. No.		
8	2.5	VAGH 8	36	22	25	31	91	43	117	0.35	71 01 500		
10	4.0	VAGH 10	44	28	33	36	109	47	140	0.8	71 01 501		
13	6.7	VAGH 13	58	36	38	44	138	64	169	2.2	71 01 502		
13	6.7	VMAGH 13	for dumpers see page 24										

- 1 No reduction of the VIP-WLL.
- 1 Thickened hook tip to avoid misuse e.g; incorrect insertion of the
- chain. 1 The calibrated tooth lugs facilitate an optimal chain positioning in the hook.
- 1 The curved insertion opening prevents the chain from easily falling out in compliance with pr EN 1677-7. 1 Connecting bolt and
- tensioning sleeve are pre-assembled.
- Shortening by means of VVS and VVH

VIPshortening hook VVH

Special designed hook tip to avoid misuse.

	Chain	WLL t	Туре	А	В	С	D	Е	F	Т	kg/pc.	Ref. No.
	6	1.5	VVH 6	31	18	20	43	7.5	23	50	0.25	79 88 658
	8	2.5	VVH 8	38	22	25	54	9.5	33	64	0.35	79 87 319
2	10	4.0	VVH 10	47	28	31	68	12	42	80	0.8	79 87 320
	13	6.7	VVH 13	60	36	40	87	15	47	103	2.2	79 87 321
	16	10.0	VVH 16	75	45	50	108	18.5	57	125	2.9	79 88 669
Ś												

Endless

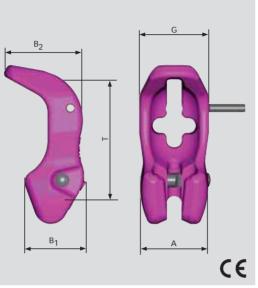
chain by

means

of VVH

Attention:

New Standard for shortening ele-ments pr EN 1677-7! All RUD shortening components do already fulfil these requirements.



VIP-Multishortening claw **VMVK** EP 0736150

Attention:

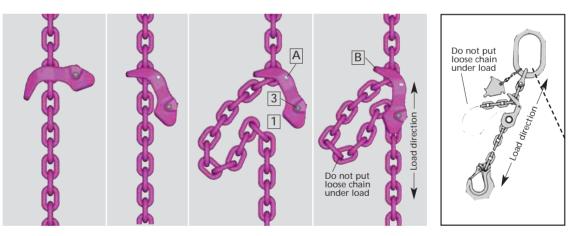
w Standard for New standard for shortening ele-ments pr EN 1677-7! All RUD shortening components do already fulfil these requirements equirements.

After decades of success the RUD shortening claw has been further enhanced.

Fitted on a continuous chain strand at any required position.

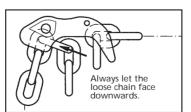
Fitted permanently on the chain leg at any required position, no additional chain coupling devices are required.

It can either be mounted or easily moved to any position along the chain leg.


The ideal link shaped chain pocket facilitates even wearing of the chain thus no reduction of the WLL. A robust safety bolt with spring prevents accidental loosening of the chain in both loaded and unloaded condition.

In case of a mounted but not firmly fixed VMVK, please adhere to the instructions marked "Attention" below.

Complies with pr EN 1677-7.


Chain	WLL t	Туре	А	^B 1	B ₂	Т	G	kg/pc.	Ref. No.
6	1.5	VMVK 6	38	34	40	66	38	0.3	79 84 072
8	2.5	VMVK 8	46	41	52	88	48	0.55	71 00 760
10	4.0	VMVK 10	58	50	64	110	60	1.1	71 00 761
13	6.7	VMVK 13	74	64	86	143	76	2.4	71 00 762
16	10.0	VMVK 16	91	79	105	176	98	4.4	71 00 763

VMVK Fitting and Handling

Fitting:

Pull loose chain strand through the crucifix. Secure the chain in the locking pocket at the required position and drive in the retaining pin A. Thus the multi shortening claw is fixed in the VIP chain strand. It is preferable to fit and secure the claw on the third chain link down from the suspension link for maximum adjustment. Slide the chain into the slot and secure.

Handling:

 $(\square$

Loading

In a loosened condition, insert the required link of the slack chain of the to be loaded chain Pull down the chain leg and press the securing bolt 3 the safety bolt locks automatically. Check the locking. To unlock reverse the above procedure while simultaneously pressing the safety bolt 3.

Loading

User advice: Easier application for example if an endless sling is being used.

If the VMVK or BSEK is used

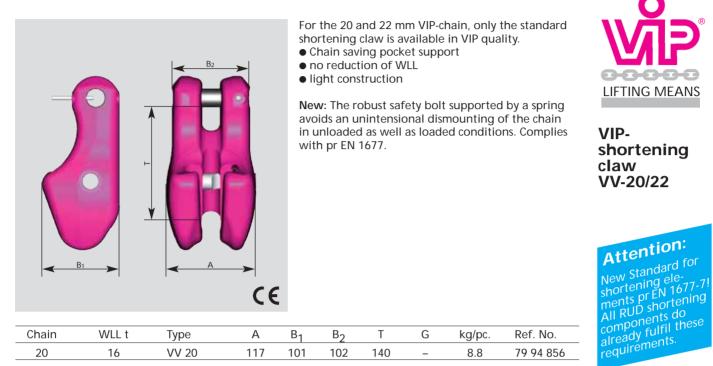
without securing bolt the chain

ned chain assembly attention

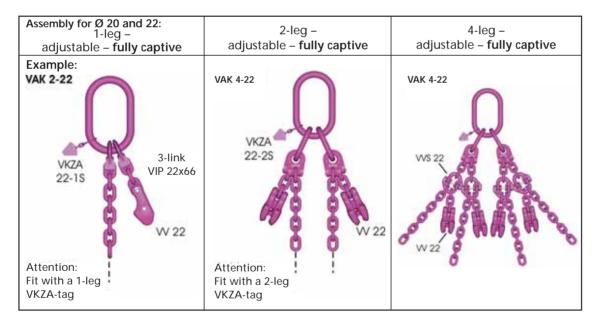
must be paid to ensure that the

chain remains in the locking slot!

must always be completely seated in the locking slot B! When pulling/lifting the shorte-


Attention:

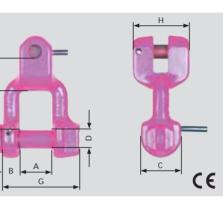
ฬ้อ


use

ฬ่อ

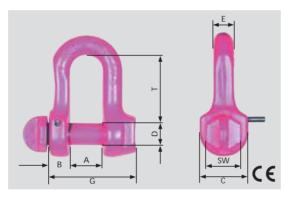
+point

Chain	WLL t	Туре	А	^B 1	B ₂	Т	G	kg/pc.	Ref. No.
20	16	VV 20	117	101	102	140	-	8.8	79 94 856
22	20	VV 22	117	101	102	140	-	8.5	79 94 855



21

VIPfool-proof shackle **VV-GSCH**

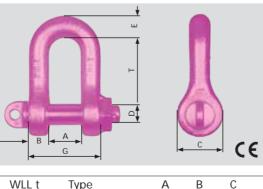

For technical description of the shackle refer to VV-SCH.

• Optimal dimensions – max. mouth width with smallest shackle bolt.

• Due to a turned clevis connection, the shackle is extremely resistant to bending.

Chain	WLL t	Туре	А	В	С	D	Е	G	Н	Т	kg/pc.	Ref. No.
6	1.5	VV-GSCH 6	17	8	22	10	21	40	28	36	0.15	71 02 022
8	2.5	VV-GSCH 8	21	10	26	12	32	48	39	48	0.26	71 02 023
10	4.0	VV-GSCH 10	27	13	34	16	35	62	45	61	0.65	71 02 024
13	6.7	VV-GSCH 13	33	17	42	20	41	81	59	78	1.35	71 02 025
16	10.0	VV-GSCH 16	38	22	49	24	49	95	69	96	2.5	71 02 026
20	16.0	VV-GSCH 20	47	27	60	30	57	119	88	108	3.9	71 04 284
22	20.0	VV-GSCH 22	53	30	76	36	72	130	95	132	6.7	71 02 027

VIP-fool-proof shackle **VV-SCH**


High-tensile patented version with an integrated safety thread in the shackle bracket. On both sides, smooth bolt support in the shackle. Bolt is turnable. No bending strength in the thread, it has only a securing function.

Pre-assembled with tensioning sleeve. Long term securing by driving in a tensio-ning sleeve. Special thread, thus fool-proof compared to other shackle bolts! Surface is pink powder coated.

Chain	WLL t	Туре	А	В	С	D	Е	G	SW	Т	kg/pc.	Ref. No.
6	1.5	VV-SCH 6	14	8	22	10	8	36	17	30	0.1	71 00 607
8	2.5	VV-SCH 8	17	10	26	12	10	44	19	36	0.2	71 00 608
10	4.0	VV-SCH 10	21	13	34	16	13	56	24	49	0.4	71 00 609
13	6.7	VV-SCH 13	27	17	42	20	17	75	29	63	0.8	71 00 610
16	10.0	VV-SCH 16	33	21	49	24	21	90	36	73	1.5	71 00 611

VIP-Shackle high-tensile **VC-SCH**

Shape acc. to DIN 82 101-C with an attached fixed nut. Securing by split-pin. Surface is pink powder coated.

	A G		C C	- C	E							alternations!
WLL t	Туре	А	В	С	D	Е	F	G	Т	kg/pc.	Ref. No.	l l
14.0	VC-SCH 4.0	42	27	60	30	29	27	96	91	2.7	79 84 331	l l technical
22.4	VC-SCH 5.0	47	30	72	36	33	30	107	111	4.4	79 84 332	to
28.0	VC-SCH 6.0	53	34	78	39	37	34	121	120	5.9	79 84 333	 ubject
												Ë

ē Sul

LIFTING MEANS

VIP-

VIP-

GSCH

Isolating

Assembly

Isolating

latch VGIL + VV

Up to 1000 V

ฬํฺ>

use

ฬํฺจ

+point

Chain	WLL t	Туре	Т1	T ₂	L	Weight/	Ref. No.	Ref. No.
			•	-		kg	VIP-Isolat. assembly	v VGIL
6	1.5	VGIL-6	71	35	357	1.4	79 84 258	79 84 161
8	2.5	VGIL-8	91	43	431	2.4	79 84 259	79 84 162
10	4.0	VGIL-10	108	47	517	4.3	79 84 260	79 84 163
13	6.7	VGIL-13	132	54	632	8.2	79 84 261	79 84 164
16	10.0	VGIL-16	166	70	760	13.1	79 84 262	79 84 165
-								

There is a danger of current flow when welding is carried out on suspended loads. The isolating latch isolates up to max. 1,000 V by means of a special non conductive plastic bearing of the clevis shackle bolt. Max operational temperature is +80°C.

Finally!

Ensures even load distribution by means of a compensating pulley with a VVGSCH-8. There is neither overload nor deformation of the concrete element.

WLL t

5.25

RUD VIP Cobra hook: with a robust hook securing, small, handy and easy to hookin in both diagonal and upper chords.

Туре

VIP-Krake 8 x 5000

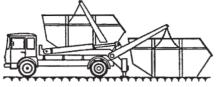
Ref. No.

complete

79 87 582

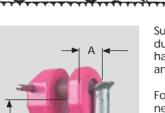
Ref. No.

79 87 366


clevis shackle with a deflection pulley

VIP-Balancing assembly "VIPoctopus" for concrete elements

Subject to technical alternations!


Chain

8/6

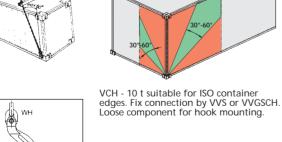
VIP-**Rhombic link** VRH for skip dumpers

D В C

Suitable for standard dumper bins. Easy handling of the bolt and securing hook.

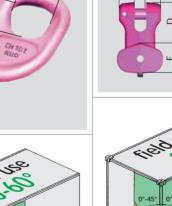
Fool-proof chain connection. Connecting bolt and securing stud are pre-assembled.

VIPautomatic sling hook **VMAGH** for skip dumpers



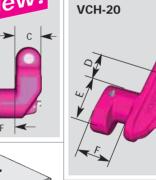
Chain	Туре	WLL t	А	В	С	D	Е	Т	kg/pc.	Ref. No.
13	VRH 13	6.7	34	67	130	25		121	1.5	79 84 370
13	VMAGH-13	6.7	58	120	47	42	38	150	2.2	79 89 490

VIP-Container hook VCH



RUD VCH hooks are not suitable for vertical lift-

Sunance ... ing. When the inclination angle > 30° - accidental loosening is impossible.



්රී

Suitable for ISO-Container edges. The container hook is equipped with a patented securing device. Therefore the hook cannot fall out of the ISO edge. Easy handling. Inserting: Without operating of securing device.

Taking out: Only possible when locking pin is released. RUD VCH-SL hooks are suitable for ver-tical lifts and up to max. 45° inclination angle (see graphic chart). Clevis connection suits 16 mm VIP chain.

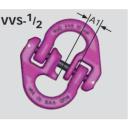
B

VCH - 22 t suitable for ISO container VCH - 22 t Sunavio to the edges. Clevis connection for the 22 mm VIP chain. VIP chain size can be reduced to 16 mm when using a VRG-16 connector.

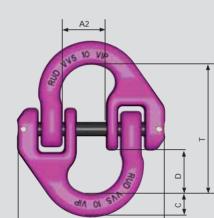
With patented locking mechanism.

							I		
Туре	WLL t	А	В	С	D	Е	F	kg/pc.	Ref. No.
VCH – 10	10.0	56	70	24	83	76	45	3	51 005
VCH – SL 10	10.0	18	71	42	40	50	47	2.5	85 03 115
VCH – 20	20.0	24	62	48	45	76	45	4.2	85 02 313

Various external connections e.g. lifting points, metalic grabs, etc. can be mounted in the locking bracket (A2).


The bracket halves can be optionally combined to suit the application.

No movement, thus damage of the securing



fool-proof on both sides spring or the sleeves of the retention bolt is avoided.

In the fool proof-bracket with a forged nose, only the correct chain size or overload indica-tor can be (A1) fitted.

fool-proof chain connection on one side

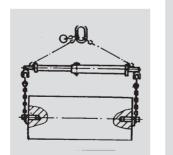
VVS-U universal

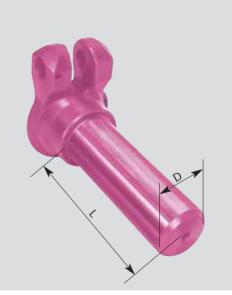
LIFTING MEANS VIP-Combi lock VVS-U VVS-V VVS-1/2

CE

World champion in load capacity!

Chain	WLL	Туре							Weight	Ref. No.	Ref. No.	Ref. No.
	t		A1	A2	В	С	D	Т	kg/pc.	VVS-U	vvs-1/2	VVS-V
										universal	one side	two sides
											fool proof	fool proof
6	1.5	VVS 6	7	14	50	8.5	14	40	0.09	79 88 419	79 84 057	79 84 050
8	2.5	VVS 8	9	19	64	10.5	19	53	0.17	79 85 714	79 84 058	79 84 051
10	4.0	VVS 10	11	23	80	13	23	70	0.42	79 85 715	79 84 059	79 84 052
13	6.7	VVS 13	15	27	97	17	27	81	0.64	79 84 293	79 84 060	79 84 053
16	10.0	VVS 16	18	34	125	21	34	104	1.5	79 86 984	79 84 061	79 84 054
20	16.0	VVS 20	-	42	155	27	41	124	3	79 84 055	_	_
22	20.0	VVS 22	-	47	172	30	46	133	3.9	79 84 056	_	_
-												

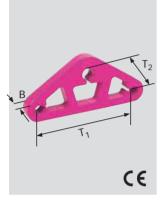

VERG to be used as a plug-in bolt for transporta-tion of tools and other similar lifting purposes when bores are the only specified lifting points available.


Minimum diameter D, refer to the table, minimum bolt length L is 2 x D. Maximum diameter D = 48 mm. Bore diameter = D + 1 mm. We recommend that for vertical lifting purposes, that the VERG be used with a spreader bar or a cross beam.

Attention:

In the event of any lifting procedure, attachment should always be at the collar. The plug-in connectors are non stock items and their production is subject to customer requirement. Thus bear in mind the

respective delivery periods.



VIP-Plug-in connector **VERG**

nations!	ods.	elivery peri-				/	,	
alter	Chain	WLL t	Туре	D _{min}	D*	L*	A _{min.}	Т
ical	6	1.5	VERG – 6	17			11	20
schn	8	2.5	VERG – 8	22	Indiaata ai	zes L and D	15	26
to te	10	4.0	VERG – 10	28			18	33
ject	13	6.7	VERG – 13	36	when orde	enngi	24	42
Sub	16	10.0	VERG – 16	45			29	54

VII	P-Ba	lancer	VW
-----	------	--------	----

≮β 0-45°											
Chain	WLL t	Туре	Т1	T ₂	В	Weight/k	g Ref. No.				
6	2.1	VW-6	110	42	15	0.4	79 83 128				
8	3.5	VW-8	150	56	20	1.0	79 83 129				
10	5.6	VW-10	180	70	25	2.2	79 83 130				
13	9.5	VW-13	240	97	30	4.1	79 82 669				
16	14.0	VW-16	300	120	35	8.1	79 83 131				
20	22.4	VW-20	300	123	45	12.4	79 83 135				
22	28.0	VW-22	350	138	50	17.1	79 83 142				
<u>Attention:</u> Balancing position or inclined position of balancer may 10°											

Attention: Balancing position or inclined position of balancer max. 10°.

Balancer	connection at top	connection at bottom
VW-6	VV-SCH 8	VV-GSCH 6
VW-8	VV-SCH 10	VV-GSCH 8
VW-10	VV-SCH 13	VV-GSCH 10
VW-13	VV-SCH 16	VV-GSCH 13
VW-16	VC-SCH 4.0	VV-GSCH 16
VW-20	VC-SCH 5.0	VV-GSCH 20
VW-22	VC-SCH 6.0	VV-GSCH 22/ When shortened VC-SCH 6 + VVS-22

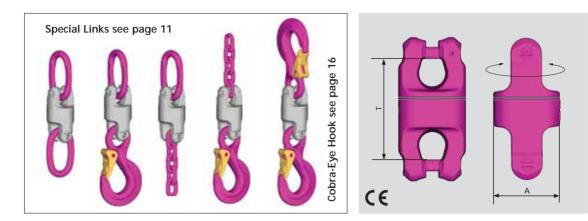
VIP Balancing head complete 2 leg VWK 2S

* Increased WLL. When using two slings whereby one is equipped with a balancer and both master links are in the crane hook, the calculations for the capacity can be based on four bearing legs; provided the load is symetrical and the inclination angle is max. 45° to the vertical (BGR 500).

	*0-45° WLL 4 leg = 2x2 leg					
Chain	WLL t	L ₁	L ₂	A-link	Weight/kg	Ref. No.
6	4.2	224	138	13x60x110	1.5	79 84 334
8	7.0	288	172	18x75x135	2.8	79 84 335
10	11.2	354	206	22x90x160	6.8	79 84 336
13	19.0	428	238	26x100x180	10.7	79 84 337
16	28.0	507	270	32x110x200	20.2	79 84 338
20	45.0	682	434	40x180x340	35.3	79 84 339
22	56.0	726	434	45x180x340	50	79 84 340

VWK-2S consisting of: 1 x VIP A-link, 1 x VIP shackle, 1 x VIP balancer, 2 x VIP fork shackle. Separately specify and order the VIP 2-leg assemblies and chains. User advice:

Ideal in combination with a VIP Multi-shortening claw in every chain leg.



subject to technical alternations!

26

The following applies to both versions:

The BGR stipulates that twisted slings are not to be loaded. This requirement is automatically achieved by the ball bearing swivel - swivelling under load. Not designed for continuous use.

F

CE

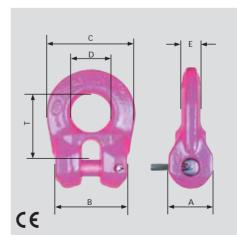
(A)

Special universal swivel PowerPoint:

A patented clevis connection design hence a universal connection which is loadable from any direction and facilitates the shortest combination possibilities. Only RUD-approved VIP chains and components must be used.

1. VIP Cobra-Eye Hook VCÖH, see page 16 2. B-Link for PowerPoint PP-(WLL)-B, see page 11 Note: VIP chain connection is designed fool proof. When assembling component 1 and 2, please pay attention to the correct Working Load Limits.

Special VWA:


Owing to the adapter bar, it can be fool-proof connected to all VIP clevis components. The sealed body makes it more resistant to dirt. Do not bend the appliance! The installation of the adapter should be done in such a way that no bending occurs during use. Supply is subject to stock availability. This type will soon be replaced.

Chain	WLL t	Туре	(A)/A	(B)	(C)	(T)/T	(kg/pc.)	(Ref. No.)/Ref. No.
4	0.63	– /UW PP-4	- /34	-	-	- /51	- /0.22	- /79 90 878
6	1.5	(VWA 6)/UW PP-6	(30)/39	6.1	7.2	(50)/65	(0.2)/0.43	(71 00 629)/79 90 879
8	2.5	- /UW PP-8	(37)/53	8.2	9.7	/79	/0.98	/79 90 880
10	4.0	(VWA 10)/UW PP-10	(46)/68	10.3	12.2	(82.5)/97	(0.7)/1.9	(71 00 631)/79 90 881
13	6.7	(VWA 13)/UW PP-13	(60)/83	13.4	15.7	(92)/119	(1.4)/3.6	(71 00 632)/79 90 882
16	10.0	– /UW PP-16	(70)/88	16.4	19.2	(115)/132	(2.5)/4.8	- /79 92 861
20	16.0	(VWA 20)/ –	(100)/ –	21	25	(147)/ –	(6.5)/ –	(79 90 723)/ –
22	20.0	(VWA 22)/ –	(102)/ –	23	28	(147)/ –	(6.8)/ –	(71 00 634)/ –

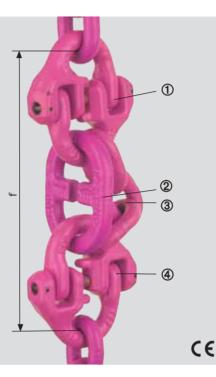
A single component for extrinsic connections to clevises, flanges etc.

Complete with a pre-assembled connecting bolt and tensioning sleeve.

lsu	Chain	WLL t	Туре	А	В	С	D	Е	Т	kg/pc.	Ref. No.
alternations	6	1.5	VRG 6	17	30	37	16	8	28	0.07	71 00 469
Iter	8	2.5	VRG 8	23	40	50	22	10	37	0.2	71 00 470
	10	4.0	VRG 10	28	50	60	26	13	46	0.3	71 00 471
technical	13	6.7	VRG 13	36	64	75	32	17	58	0.7	71 00 472
to te	16	10.0	VRG 16	45	75	92	40	20	74	1.1	71 00 473
	20	16.0	VRG 20	58	92	118	52	28	94	3.1	71 03 384
Subject	22	20.0	VRG 22	62	102	124	52	32	94	3.5	71 01 611

LIFTING MEANS

VIP-Universal Swivel -PP-UW-Patent


VIP-Swivel connector VWA

VIP-Connector VRG

VIP-**Overload** indicator complete VCG

Unique RUD product!

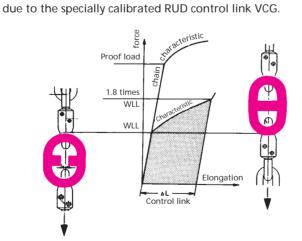
The safety sensation

Immediate visual indication of overload - due to the specially calibrated RUD control link VCGH. Although stationary fitted it can easily be replaced by means of the Combi-lock VVS-V consisting of:

① Combi-lock	Easy hammer mounting
VVS-V	(fool-proof chain
(see page 25)	connection)
² Control link VCG	With indicator bars and a calibrated slot width (nominal mm)
③ VIP chain, 3 links (see page 8)	Additional securing element besides the control link in side connection
④ Combi-lock	Easy assembly
VVS-V	(fool-proof chain
(see page 25)	connection)

Control link VCG WLL Initial size Weight Туре nom. (mm) kg t VCG - 6 1.5 4 0.06 79 87 623 VCG - 8 0.10 79 87 046 2.5 6 VC<u>G -10</u> 0.20 7 79 87 626 4 VCG -13 10 0.40 79 88 245 6.7 VCG -16 10 11 0.70 79 89 743 VCG -20 79 92 549 16 12 1.10 VCG -22 20 16 1.90 79 92 551

Immediate visual indication of overload -


Overload indicator VCG (complete)

Overioud i	iuicator	veo (comp	icic)	
Nom. size	WLL	single	build.	Weight
chain mm	t	parts	length (mm)	kg
6	1.5		115	0.3
8	2.5	VSV-V	151	0.5
10	4	VCG	198	1.2
13	6.7	3 links	232	2.1
16	10	Chain	291	4.5
20	16	VSV-V	345	8.8
22	20		382	12.1

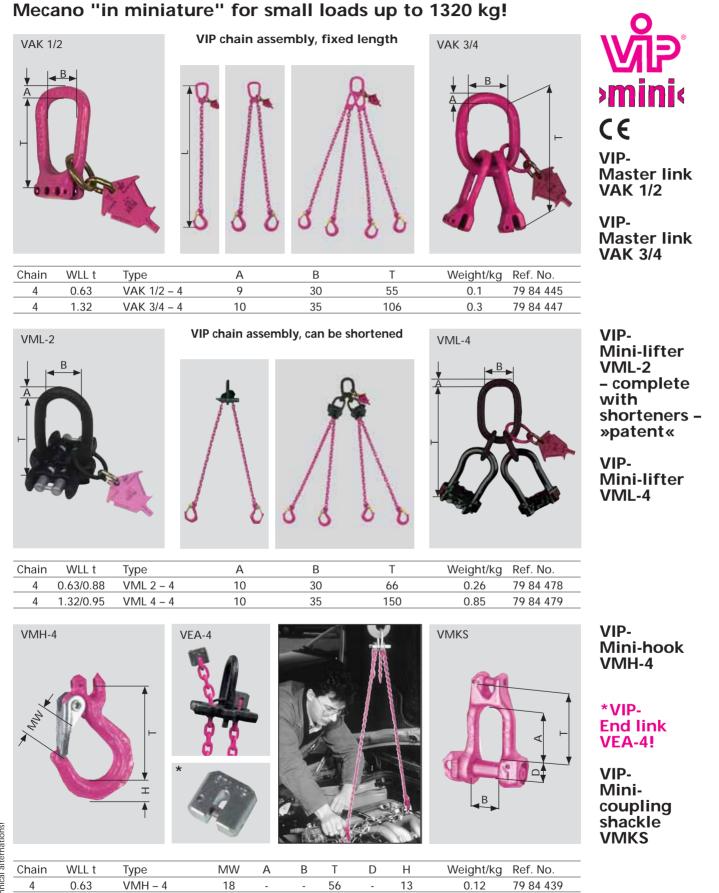
If the two indicator bars are not closed after overload (slot width > 0.5 mm), the user may install a new control link. Should the overload repeatedly

occur, a bigger chain size has to be used. If the bars are closed or even bent up, the chain has to be removed from operation and be examined (as per BGR 500).

Hints for use

Do not exceed permissible WLL!

The calibrated slot width corresponds with the indicated nominal size.


Chain strand overloaded! Clearly visible through the indi-cator. Slot width will decrease with increasing overload. The closing of the indicator implies that the WLL has been exceeded by 80 % to 100 %!

Ref.

No.

A WORLD SPECIALTYthe one and only Mini mecano system 4 mm!

4

4

0.63

0.63

VMKS – 4

VEA – 4

30

-

-

14

42

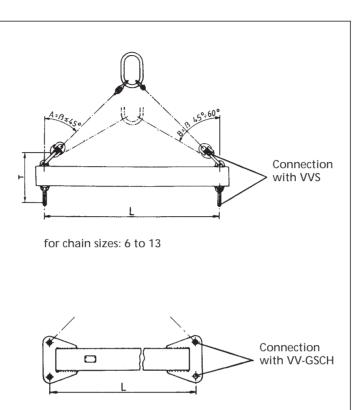
10

-

-

79 85 243

79 90 215


0.12

0.05

LIFTING MEANS

VIP-Spreader bar fixed VSRS

for chain sizes: 16 to 22

VIP Spreader bar fixed VSRS When ordering please indicate the effective length L of the spreader bar!

Spreader bars are also available with chain slings. When ordering, specify the type of master link and the required inclination angle β .

VIP spreader bars are non stock items and their production is subject to customer requirement. Thus bear in mind the respective delivery periods.

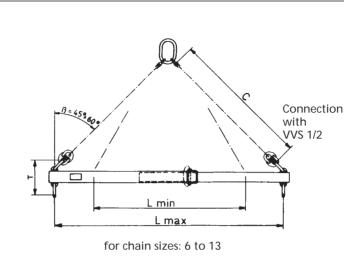
Surface: Effective length L **up to** 2500 mm: pink powder coated.

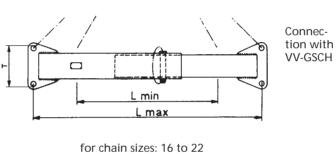
Effective length L **beyond** 2500 mm: yellow painted.

Chain		Possible		WL	L kg	Weight	
size	Туре	working length L	Т	0 – 45°	45 – 60°	kg/pc.	Ref. No.
6	VSRS-6	500 – 4000 mm	190	2100	1500		86 00 110
8	VSRS-8	500 – 5000 mm	240	3500	2500	gth o	86 00 111
10	VSRS-10	500 – 5000 mm	320	5600	4000	- ng	86 00 112
13	VSRS-13	1000 – 5000 mm	350	9500	6700	g	86 00 113
16	VSRS-16	1000 – 5000 mm	250	14000	10000	kin _	86 00 114
20	VSRS-20	1000 – 5000 mm	285	22400	16000	depending working leng	86 00 115
22	VSRS-22	1000 – 5000 mm	290	28000	20000	5	86 00 116

Subject to technical alternations!

VIP Spreader bar adjustable VSRV


When ordering please indicate working length L of the spreader bar!


Adjustable spreader bars are also available with chain slings. When ordering, specify the type of master link and the required inclination angle β .

VIP spreader bars are non stock items and their production is subject to customer requirement. Thus bear in mind the respective delivery periods.

Surface: Pink powder coated.

Lmin. depends on Lmax. and nominal size.

LIFTING MEANS

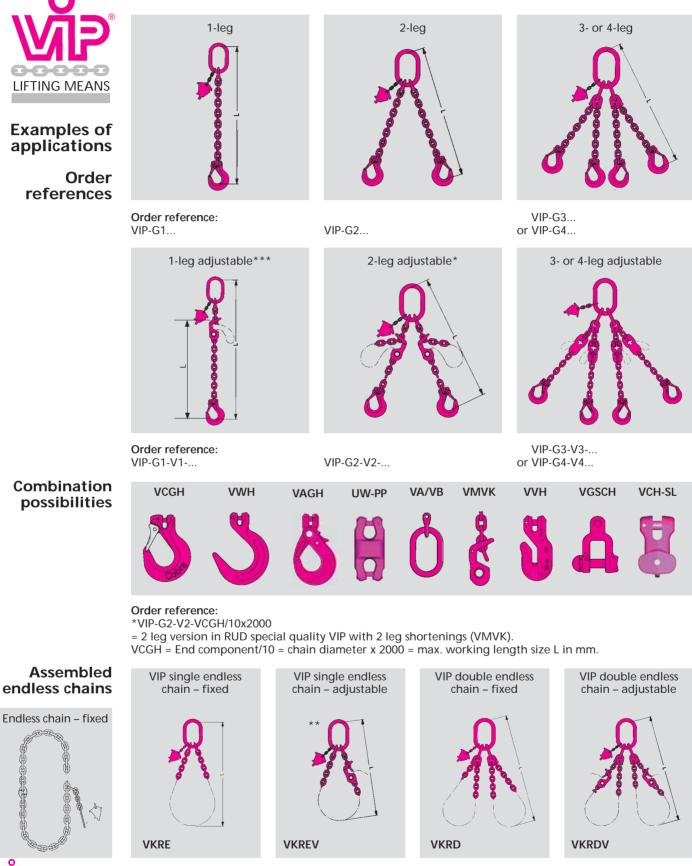
VIP-Spreader bar adjustable VŚŔV

use use +point
Ŗ
R
0
ò
4
8
0

Chain		possible working		W	LL kg	Weight	
size	Туре	length Lmax.	Т	$\leq \beta 45^{\circ}$	β 45 – 60°	Kg/St.	Ref. No.
6	VSRV-6	1500 – 4000 mm	200	2100	1500		86 00 120
8	VSRV-8	1500 – 4000 mm	250	3500	2500	th	86 00 121
10	VSRV-10	1500 – 4000 mm	330	5600	4000	eng	86 00 122
13	VSRV-13	1500 – 4000 mm	360	9500	6700		86 00 123
16	VSRV-16	1500 – 4000 mm	250	14000	10000	kin	86 00 124
20	VSRV-20	1500 – 4000 mm	285	22400	16000	del	86 00 125
22	VSRV-22	1500 – 4000 mm	290	28000	20000	5	86 00 126

Edge protecting device **RSK**

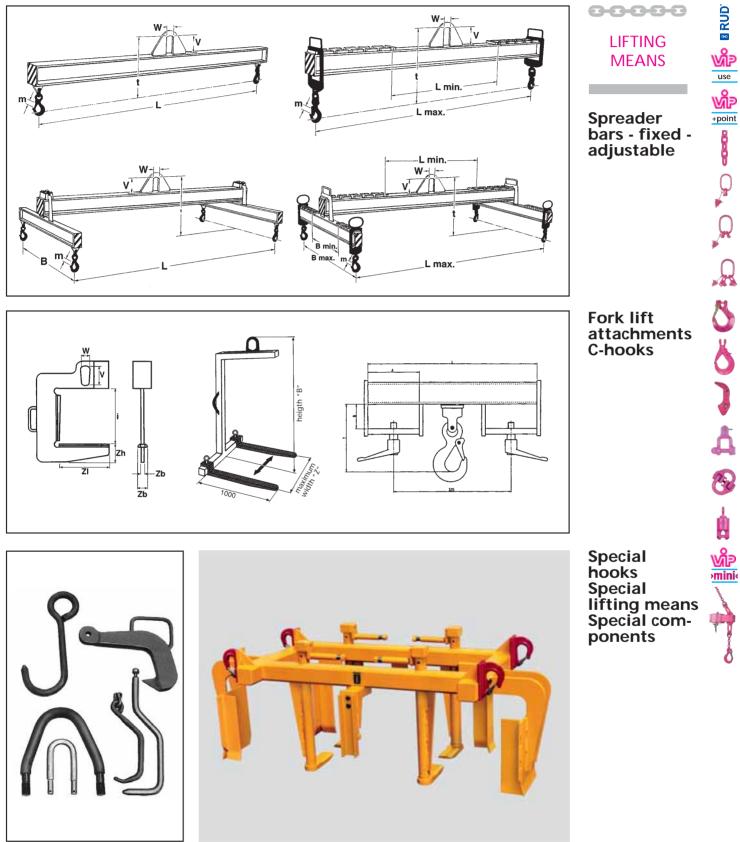
RUD-RSK system made of durable edge-robust polyurethane.


Flexible in all directions. Manually movable along the chain. Even load distribution due to a diagonal transversal crucifix. Max. 2 m can be supplied.

Chain size	Туре	А	В	Lmax.	Ref. No.
6	RSK – 6	27	27	2000	56 033
8	RSK – 8	33	33	2000	56 037
10	RSK – 10	38	38	2000	55 810
13	RSK – 13	50	50	2000	56 038
*					

*further sizes upon request.

Subject to technical alternations!



Order examples: **1 pc VKREV-8 x 2000 = single endless chain, adjustable in RUD special quality VIP, 8 = chain dia. x 2000 = max. working length size L in mm. *** in case of long adjustable assemblies it is recommended to mount the multi claw VMKV in the lower part of the chain. Indicate Lv when ordering, e.g. VIP-G2-V2-VCGH/10x5000 Lv-2000.

32

Subject to technical alternations!

ders

RUD-lifting means are manufac-

are carried out by qualified wel-

tured acc. to DIN 15428. All welds

Welds are crack detected.

An inspection certificate as well as register card for load carrying means for regular checks and user information will be supplied.

Just let us know your design requirements or give us a short technical description eg. the WLL, respective dimensions etc.

Lifting Points - for bolting -

Maximum transport weight "G" in "tonnes" with different lifting methods

Thread sizes M 6 –	PP-S (Vario) PowerPoint-Star	PP-B (Vario) PowerPoint-B	PP-VIP (Vario) PowerPoint-VIP	VLBG – Load Ring	WBG-V Load Ring Vario
M150 Imperial (UNC,) and special lengths on request					
Number of legs	e Type PP-S 0.63 t PP-S 1.5 t	PP-S 2.5 t PP-S 4 t	PP-S 6.7 t PP-S 8 t	VLBG 0.3 t VLBG 0.63 t VLBG 1.5 t VLBG 1.5 t VLBG 1.5 t VLBG 2.5 t VLBG 4 t VLBG 4 t VLBG 4 t VLBG 7 tSPEC. VLBG 10 t VLBG 15 t VLBG 16 t VLBG 15 t VLBG 16	WBC-V 0.3 t WBC-V 0.45 t WBC-V 1.0 t WBC-V 1.0 t WBC-V 1.3 t WBC-V 1.8 t WBC-V 2 t WBC-V 3 5 t
Number of Load direction	Thread size Type M W 15 19 PP.5 19	M M 20 24	M M 30 36	M M	M M M M M M M M M M 8 10 12 14 16 18 20 24 30
G 1 0°	0.6 1.5	2.5 4	6.7 10	0.3 0.6 1 1.5 2.5 4 4 5 7 8 10 15 20 1 2	0.6 0.9 1.2 2.0 2.6 3.6 4 7 10
G 2 0°	1.2 3	5 8	13.4 20	0.6 1.2 2 3 5 8 8 10 14 16 20 30 40 2 4	1.2 1.8 2.4 4.0 5.2 7.2 8 14 20
G 1 90°	0.6 1.5	2.5 4	5 8		0.3 0.45 0.6 1.0 1.3 1.8 2 3.5 5 (0.4) (0.6) (0.7) (1.25) (1.5) (2.0) (2.5) (4) (6)
G 2 90°	1.2 3	5 8	10 16		0.6 0.9 1.2 2.0 2.6 3.6 4 7 10 (0.8) (1.2) (1.5) (2.5) (3) (4.0) (5) (8) (12)
2 ⁰⁻ 45°	0.8 2.1	3.5 5.6	7.1 11.2	0.4 0.8 1.4 2.1 3.5 5.6 5.6 7 9.8 11.2 14 21 28 1.4 2.8	0.4 0.6 0.8 1.4 1.8 2.5 2.8 4.9 7
G 2 45- 60°	0.6 1.5	2.5 4	5 8	0.3 0.6 1 1.5 2.5 4 4 5 7 8 10 15 20 1 2	0.3 0.4 0.6 1.0 1.3 1.8 2 3.5 5
G 2 unsymmetrical	0.6 1.5	2.5 4	5 8	0.3 0.6 1 1.5 2.5 4 4 5 7 8 10 15 20 1 2	0.3 0.4 0.6 1.0 1.3 1.8 2 3.5 5
3+4 0- 3+4 45°	1.3 3.2	5.3 8.4	10.5 16.8	0.6 1.3 2.1 3.1 5.2 8.4 8.4 10.514.716.8 21 31.5 42 2.1 4.2	0.6 0.9 1.2 2.1 2.7 3.7 4.2 7.3 10.5
G 3+4 45- 60°	0.9 2.2	3.8 6	7.5 12	0.4 0.9 1.5 2.2 3.7 6 6 7.5 10.4 12 15 22.5 30 1.5 3	0.4 0.6 0.9 1.5 1.9 2.7 3 5.2 7.5
g 3+4	0.6 1.5	2.5 4	5 8	0.3 0.6 1 1.5 2.5 4 4 5 7 8 10 15 20 1 2	0.3 0.4 0.6 1.0 1.3 1.8 2 3.5 5
<u> </u>	HLead size M M 12 16	M M 20 24	M M 30 36	M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M 8 10 12 14 16 18 20 24 30

RUD Lifting Points = Advantages!

• All parts are either 100 % crack detected or proof loaded accord. to EN 1677.

All original bolts from RUD are 100 % crack detected.

Safety factor 4 : 1 in any direction.
 The types VRS, VRM and VLBG have to be adjusted to

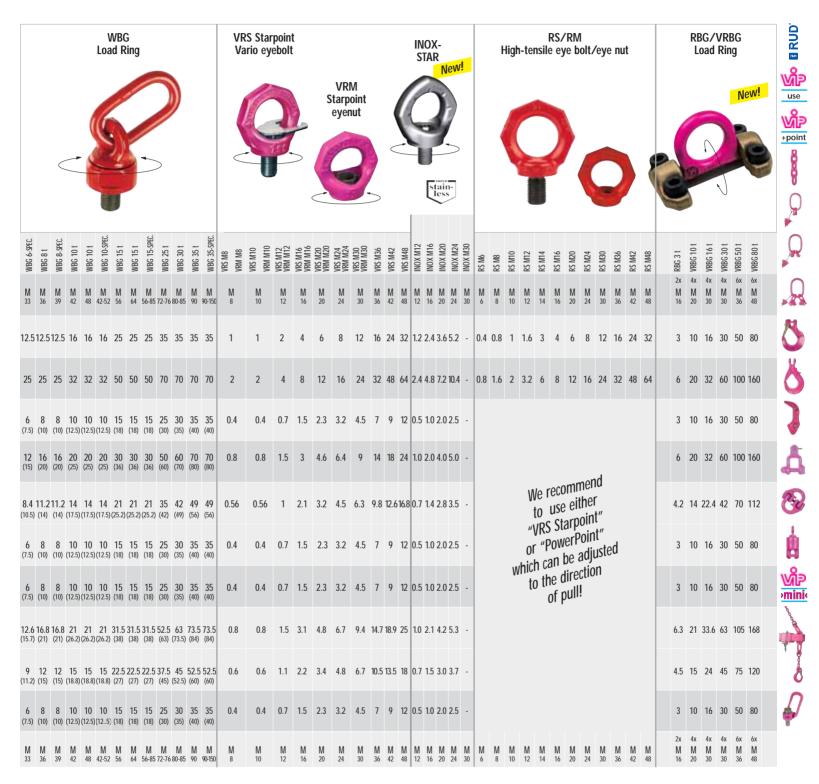
the load direction.

• RUD patented features such as clamping spring (VLBS) for noise reduction and distance lugs for a perfect root pass weld increase the ease of use.

RUD CD-ROM and slide chart "RUD-MULTI-MASTER"

ROD CD-ROM and slide chart - ROD-MOLTI-MASTER facilitate the correct selection of lifting points.
 Low installation height, high dynamic and static strength. The RUD lifting and lashing points CD-ROM simplifies the (lifting/lashing points) correct layout.
 RUD Lifting Points are in accordance with DIN EN 818 and 1/37 with a dynamic loading of master than 20 000 load.

1677 with a dynamic loading of more than 20,000 load


cycles. The BG recommends: At high dynamic applications with high load cycles (permanent operation), the WLL must be reduced.

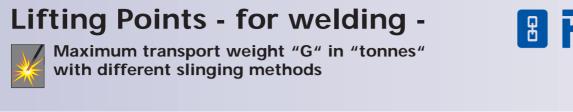
Subject to technical alternations!

Lifting Points - for bolting -

Maximum transport weight "G" in "tonnes" with different lifting methods

We have the right tools for you. Call us! Phone no. or e-mail:

+49 7361-504-1170 or info@rud.com


The perfect service for the CAD department.
We provide you with geometry datas for your design.
Order our CD-ROM for the calculation of the right lifting point.
Especially useful for the designer is the **3D**-presentation of the lifting points.

...or www.rud.com

Click on lifting means —> lifting points

Subject to technical alternations!

		5				WP Pov	PP-S verP						PPH owe						L			VLBS for we	g			E	ye P		RBS for w	eldin	g		
	POII	E		all various					all various					Ne	ew!						in- ss		9	~		<u>\</u>		Nev	<u>)</u>				
		of legs	u			all	vari	ous				2	ıll va	ariou	S								5 t		_								
		Number of legs	Load direction	Type	WPP 0.63 t	WPP 1.5 t	WPP 2.5 t	WPP 4 t	WPP 6.7 t	WPP 8 t	WPPH 0.63 t	WPPH 1.5 t	WPPH 2.5 t	WPPH 4 t	WPPH 6.7 t	WPPH 8 t	VLBS 1.5 t	VLBS 2.5 t	VLBS 4 t	VLBS 6.7 t	VLBS 10 t	VLBS 16 t	LBS(1) RS 0.5 t	LBS(3) RS 1 t	LBS(5) RS 2 t	VRBS 4 t	VRBS 6.7 t	VRBS 10 t	VRBS 16 t	VRBS 30 t	VRBS 50 t		
	¢ G	1	0°		0.6	1.5	2.5	4	6.7	10	0.6	1.5	2.5	4	6.7	10	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	30	50		
¢	Å G	2	0°		1.2	3	5	8	13.4	20	1.2	3	5	8	13.4	20	3	5.0	8	13.4	20	32	1	2	4	8	13.4	20	32	60	100		
	G	1	90°		0.6	1.5	2.5	4	5	8	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	30	50		
•	G o	2	90°		1.2	3	5	8	10	16	1.2	3	5	8	10	16	3	5.0	8	13.4	20	32	1	2	4	8	13.4	20	32	60	100		
N.	₿ ¢	2	0- 45°		0.8	2.1	3.5	5.6	7.1	11.2	0.8	2.1	3.5	5.6	7.1	11.2	2.1	3.5	5.6	9.38	14	22.4	0.7	1.4	2.8	5.6	9.38	14	22.4	42	70		
	G	2	45- 60°		0.6	1.5	2.5	4	5	8	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	30	50		
Ý	G	2	unsymmetrical		0.6	1.5	2.5	4	5	8	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	30	50		
		3+4	0- 45°		1.3	3.2	5.3	8.4	10.5	16.8	1.3	3.2	5.3	8.4	10.5	16.8	3.15	5.25	8.4	14.1	21	33.6	1.05	2.1	4.2	8.4	14.1	21	33.6	63	105		
	G	3+4	45- 60°		0.9	2.2	3.8	6	7.5	12	0.9	2.2	3.8	6	7.5	12	2.25	3.75	6	10.1	15	24	0.75	1.5	3	6	10.1	15	24	45	75		
*	G	3+4	unsymmetrical			1.5					0.6				5		1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	30	50		
We	eld			-											HV 3+8		HV 5+3	HV 7+3	HV 8+3	HV 12+4	HV 16+4	HV 25+6	HV 5+3	HV 8+3	HV 12+4	HV 4+3	HV 5.5+3	HV 8.5+4	HV 8.5+4	HV 15+4	HV 25+8		

We have the right tools for you. Call us! Phone no. or e-mail:

+49 7361-504-1170 or info@rud.com

The perfect service for the CAD department. We provide you with geometry datas for your design. Order our CD-ROM for the calculation of the right lifting point. Especially useful for the designer is the **3D**-presentation of the lifting points. ...Or www.rud.com

Click on lifting means —> lifting points

RUD Lifting Points are in accordance with DIN EN 818 and 1677 with a dynamic loading of more than 20,000 load cycles.

The BG recommends: At high dynamic applications with high load cycles (permanent operation), the WLL must be reduced.

VIP-LASHING CHAINS

- in special quality class 10-VIP-

Attention!					VIP-VSK-KZA	Туре	e: VIP	-VSK-8-	A-VKSPS-R
			VCGH		/к** 👗	VKSPS-R		١	VCGH
standal u L. slid			Color -			VKJFJ-K		-	
has period All									\checkmark
cince 00.0 monts				1	1 1	Lev fol	/er dable		
fulfill the step	0		Chanaland Ian		-) \		aabro		
require ctand-	Ž		Standard leng	JIN 3500		<u></u>			
and VII is an	(VMVK)	**Wit	h flexible VMVK, shortening can	be done at any	y position of the cl	nain leg since the cl	law can b	be moved a	long the chain.
chains per higher		Chain	Type of chain	Lashing	Tensi	oner	Lmin	Weight	Ref. no.
up to 30 % flig- lashing capacity.	4	dia.	complete	capacity*** daN		Standard Tension Force	mm	kg/pc.	
100					Туре	STF in daN (kp)			
	Version	6	VIP-VSK-6-A-VKSPS	3000	VKSPS-6	1500	760	4.3	7100 785
The sensation!	/er	6	VIP-VSK-6-A-VKSPS-R VIP-VSK-8-A-VKSPS*	3000 5000	VKSPS-R-6 VKSPS-8	1500 2500	760	4.5 8.5	7990 249
sensation		8	VIP-VSK-8-A-VKSPS-R*	5000	VKSPS-R-8	2500	920	9.0	7987 521
		10	VIP-VSK-10-A-VKSPS*	8000	VKSPS-10	2800	1075	12.0	7100 787
RUP Special Quality ~		10 13	VIP-VSK-10-A-VKSPS-R* VIP-VSK-13-A-VKSPS*	8000 13400	VKSPS-R-10 VKSPS-13	2800 3600	1075 1400	12.2 23.5	7100 813 7100 788
U-SP 6mm		13	VIP-VSK-13-A-VKSPS-R*	13400	VKSPS-R-13	3600	1400	24.5	7100 814
Se STF 1500 dall		<u> 16 </u> 16	VIP-VSK-16-A-VKSPS VIP-VSK-16-A-VKSPS-R	20000 20000	VKSPS-16 VKSPS-R-16	3600 3600	1750 1750	36.0 37.0	7104 309 7990 250
Les-			Lashing Capacity 1daN= 10N			innovation: ICE wi 60 % higher LC th		1	
12					(up to a	60 % higher LC th	han Grad	de 8).	
Identification				VIP-VS	К-К7А 占	Тур	e: VIP		-B-VKSPS-R
identification chain			VCCU	*11 *0					VCGH
luci also as che		1.12	VCGH			VKSPS-R			VCGIT
tag also gauge		(-00		VKSPS-R		Beel	
tag also as the testing gauge (patent).				-00	PVVS	VKSPS-R		Boð	
tag also gauge	Ĥ	(VVS VH	VKSPS-R			
tag also gauge testing gauge (patent). VIP-KZA Ref. no. (with	(HVV	(-cc S	VVS VH		ever	Pc	
tag also gauge (patent). VIP-KZA Ref. no. (with assembly link)	(HVV) -	(1	ин 🚶		ever oldable	Pc	
tag also gauge (patent). VIP-KZA Ref. no. (with assembly	-B- (VVH)	(Star	VVS VH			Pc	
tag also gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625	8-	6	VUGH	Star	ин 🚶			Pc	
tag alog gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624	ion -B-	6 6	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R	3000 3000	VH ndard length 3 VKSPS-6 VKSPS-R-6	1500 1500	840 840	4.0 4.2	7989 511 7990 247
tag also gauge testing gauge (patent).VIP-KZARef. no. (with assembly link)VIP-VSK-67988 623VIP-VSK-87988 623VIP-VSK-107988 625VIP-VSK-137988 626VIP-VSK-167988 627	ion -B-	6 6 8	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS*	3000 3000 5000	VH ndard length 3 VKSPS-6 VKSPS-R-6 VKSPS-8	1500 1500 2500	840 840 1000	4.0 4.2 8.0	7989 511 7990 247 7989 512
tag alog gauge (patent). VIP-KZA Ref. no. (With assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 623 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627	8-	6 6 8 8 10	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R	3000 3000 5000 5000 8000	VH VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-10	1500 1500	840 840	4.0 4.2 8.0 8.5 12.0	7989 511 7990 247 7989 512 7989 513 7989 514
tag alog gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 623 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain Which lashing chain	ion -B-	6 6 8 8 10 10	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-10-B-VKSPS-R*	3000 3000 5000 5000 8000 8000	VH VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-8 VKSPS-R-8 VKSPS-10 VKSPS-R-10	1500 1500 2500 2500 2800 2800	840 840 1000 1020 1215 1215	4.0 4.2 8.0 8.5 12.0 12.2	7989 511 7989 511 7990 247 7989 512 7989 513 7989 514 7989 515
tag alog gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 623 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain Which lashing chain	ion -B-	6 6 8 8 10	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS*	3000 3000 5000 5000 8000	VH VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-10	1500 1500 2500 2500 2800	840 840 1000 1020 1215	4.0 4.2 8.0 8.5 12.0	7989 511 7990 247 7989 512 7989 513 7989 514
tag aloc gauge testing gauge (patent). VIP-KZA Ref. no. (With assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-13 7988 626 VIP-VSK-16 7988 627	ion -B-	6 6 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS	3000 3000 5000 8000 8000 13400 13400 20000	VH hdard length 3 VKSPS-6 VKSPS-R-6 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-13 VKSPS-R-13 VKSPS-16	1500 1500 2500 2500 2800 2800 3600 3600 3600	840 840 1000 1020 1215 1215 1250 1550 1950	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0	7989 511 7990 247 7989 512 7989 513 7989 513 7989 514 7989 515 7989 516 7989 517 7989 518
tag alog gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 623 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain Which lashing chain	ion -B-	6 6 8 8 10 10 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R*	3000 3000 5000 5000 8000 8000 13400 13400	VH Ndard length 3 VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-13 VKSPS-R-13	1500 1500 2500 2500 2800 2800 3600 3600	840 840 1000 1020 1215 1215 1550 1550	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0	7989 511 7990 247 7989 512 7989 513 7989 513 7989 514 7989 515 7989 516 7989 517
tag aloc gauge (patent). VIP-KZA Ref. no. (With assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 623 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for w	ion -B-	6 6 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS	3000 3000 5000 8000 8000 13400 13400 20000	VH hdard length 3 VKSPS-6 VKSPS-R-6 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-13 VKSPS-R-13 VKSPS-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600	840 840 1000 1215 1215 1250 1550 1550 1950	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 513 7989 513 7989 514 7989 515 7989 516 7989 517 7989 518
tag aloc gauge (patent). VIP-KZA Ref. no. (With assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for w	ion -B-	6 6 8 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 8000 13400 13400 20000	VH hdard length 3 VKSPS-6 VKSPS-R-6 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-13 VKSPS-R-13 VKSPS-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600	840 840 1000 1215 1215 1250 1550 1550 1950	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	Version -B-	6 6 8 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS	3000 3000 5000 8000 8000 13400 13400 20000	VH hdard length 3 VKSPS-6 VKSPS-R-6 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-13 VKSPS-R-13 VKSPS-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600 3600	840 840 1000 1215 1215 1250 1550 1550 1950	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	Version -B-	6 6 8 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 8000 13400 13400 20000	VH Ndard length 3 VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600 3600	840 840 1000 1215 1215 1550 1550 1950 1950 e: VIP	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248
tag aloc gauge (patent). VIP-KZA Ref. no. (With assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for w	-C- Version -B-	6 6 8 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 8000 13400 13400 20000	VH Ndard length 3 VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600 3600	840 840 1000 1215 1215 1550 1550 1950 1950 e: VIP	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	-C- Version -B-	6 6 8 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 8000 13400 13400 20000	VH Ndard length 3 VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600 3600	840 840 1000 1215 1215 1550 1550 1950 1950 e: VIP	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	-C- Version -B-	6 6 8 8 10 10 13 13 13	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 8000 13400 13400 20000	VH Ndard length 3 VKSPS-6 VKSPS-R-6 VKSPS-8 VKSPS-R-8 VKSPS-R-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16	1500 1500 2500 2500 2800 2800 3600 3600 3600 3600 3600	840 840 1000 1215 1215 1550 1550 1950 1950 e: VIP	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0	7989 511 7990 247 7989 512 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	Version -B-	6 6 8 8 10 10 13 13 13 16 16	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R VIP-VSK-16-B-VKSPS-R VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 13400 20000 20000 20000	VH ndard length 3 VKSPS-6 VKSPS-8 VKSPS-8 VKSPS-R-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16 VKSPS-R-16 VKSPS-R	1500 1500 1500 2500 2500 2800 3600 500 500 500 500 500 500 500	840 840 1000 1215 1215 1550 1550 1950 e: VIP /MVK	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0 -VSK-8	7989 511 7990 247 7989 512 7989 513 7989 514 7989 515 7989 515 7989 516 7989 517 7989 518 7990 248 -C-VKSPS-R
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	-C- Version -B-	6 6 8 8 10 10 13 13 16 16	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS* VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS VIP-VSK-16-B-VKSPS-R VIP-VSK-16-B-VKSPS-R VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 13400 20000 20000 20000	VH ndard length 3 VKSPS-6 VKSPS-8 VKSPS-8 VKSPS-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16 VKSPS-R	1500 1500 1500 2500 2500 2800 2800 3600 500 500 500 500 500 500 500	840 840 1000 1215 1215 1550 1550 1950 1950 e: VIP /MVK	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0 -VSK-8	7989 511 7990 247 7989 512 7989 513 7989 515 7989 515 7989 515 7989 515 7989 515 7989 517 7989 518 7990 248 -C-VKSPS-R
tag and gauge (patent). VIP-KZA Ref. no. (with assembly link) VIP-VSK-6 7988 623 VIP-VSK-8 7988 624 VIP-VSK-10 7988 625 VIP-VSK-10 7988 625 VIP-VSK-16 7988 627 Which lashing chain is suitable for which is suitable for wh	-C- Version -B-	6 6 8 8 10 10 13 13 16 16	VIP-VSK-6-B-VKSPS VIP-VSK-6-B-VKSPS-R VIP-VSK-6-B-VKSPS-R VIP-VSK-8-B-VKSPS* VIP-VSK-10-B-VKSPS* VIP-VSK-10-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-13-B-VKSPS-R* VIP-VSK-16-B-VKSPS-R VIP-VSK-16-B-VKSPS-R VIP-VSK-16-B-VKSPS-R	3000 3000 5000 8000 13400 20000 20000 20000	VH ndard length 3 VKSPS-6 VKSPS-8 VKSPS-8 VKSPS-10 VKSPS-R-10 VKSPS-R-10 VKSPS-R-13 VKSPS-R-13 VKSPS-R-16 VKSPS-R-16 VKSPS-R	1500 1500 1500 2500 2500 2800 2800 3600 500 500 500 500 500 500 500	840 840 1000 1215 1215 1550 1550 1950 1950 e: VIP /MVK	4.0 4.2 8.0 8.5 12.0 12.2 21.0 22.0 35.0 36.0 -VSK-8	7989 511 7990 247 7989 512 7989 513 7989 515 7989 515 7989 515 7989 515 7989 515 7989 517 7989 518 7990 248 -C-VKSPS-R

All lashing chains are with an "EG" manufacturer's declaration and user information.

Tensioner according to (DIN-EN-12195-3) standards

 \mathcal{Q}

0

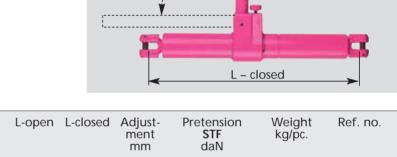
Å

ฬ้อ mini

9

P

Better than the standard requirements!


VKSPS VIP compact spindle tensioner with a tensioning lever

Special robust design due to a solid threaded pipe. Resistant to dirt ingrees. Threads are protected by solid sleeves and can thus not be easily damaged. Safety device to prevent unthrea-ding and a clevis connection are available on both sides. Connecting bolt and securing stud are pre-assembled. Pink pow-der coated with an axial tensioning lever. No securing chain is necessary.

VKSPS-R VIP compact spindle with a ratchet

Improved safety due to the foldable ratchet. Pink powder coated. No securing chain is necessary.

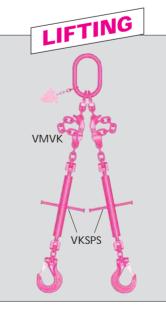
Ĩ	B RUD'
	wipe use
	بېک point
L – open	Ş

Chain dia. VIP	Lifting WLL t	Lashing cap. LC daN	WLL-kg	Туре	L-open	L-closed	Adjust- ment mm	Pretension STF daN	Weight kg/pc.	Ref. no.	
6	1.5	3000	1500	VKSPS-6	323	204	120	1500	0.9	7990 170	
6	1.5	3000	1500	VKSPS-R-6	323	204	120	1500	0.95	7990 169	
8	2.5	5000	2500	VKSPS-8*	518	308	210	2500	2.8	7987 907	
8	2.5	5000	2500	VKSPS-R-8*	518	308	210	2500	3.2	7988 569	
10	4.0	8000	4000	VKSPS-10*	533	324	210	2800	3.1	7987 994	
10	4.0	8000	4000	VKSPS-R-10*	533	324	210	2800	3.6	7988 570	
13	6.7	13400	6700	VKSPS-13*	787	487	300	3600	7.6	7990 133	
13	6.7	13400	6700	VKSPS-R-13*	787	487	300	3600	8.0	7990 132	
16	10.0	20000	10000	VKSPS-16	807	507	300	3600	8.8	7990 135	
16	10.0	20000	10000	VKSPS-R-16	807	507	300	3600	9.3	7990 134	

Surface: pink powder coated.

Remark: Tensioners once used for lashing must not then used for lifting!

 * World innovation: ICE with a 30 % higher WLL than VIP (up to a 60 % higher LC than Grade 8).


Attention: Design factor for lashing = 2 : 1

Design factor for lifting = 4 : 1

VIP Lashing chains see page 38.

Lashing protocol, easily generated with RUD CD-ROM! Reference No. 7982945

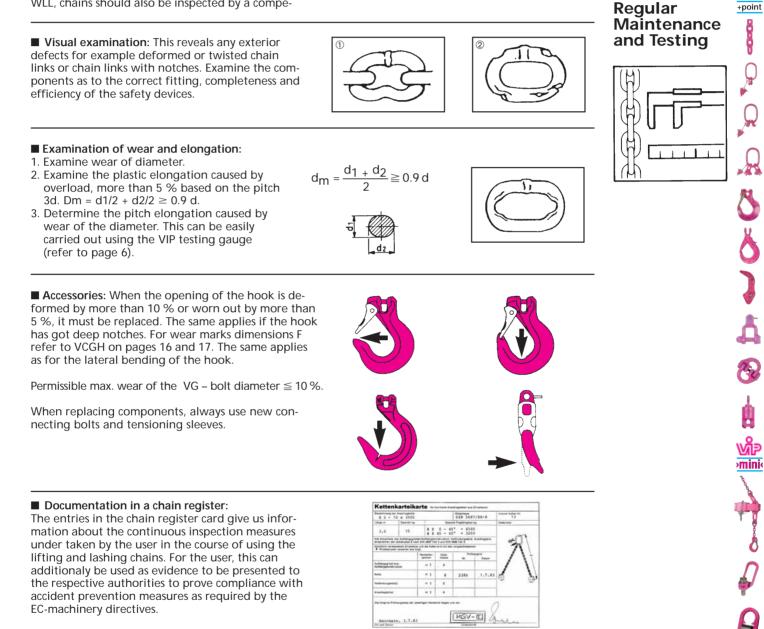
For exact length compensation with chain assemblies. Length in mm can exactly be adjusted by right- and left hand thread via tensioner or ratchet.

Under load, only lowering (lengthening) is possible.

Tensioner for chain diameter 22, with a lift of stroke of approx. 150 mm, on request.

Testing wear of nominal dia.

Testing for pitch elongation caused by overload.


LIFTING MEANS

ฬ่อ

use

ฬ่อ

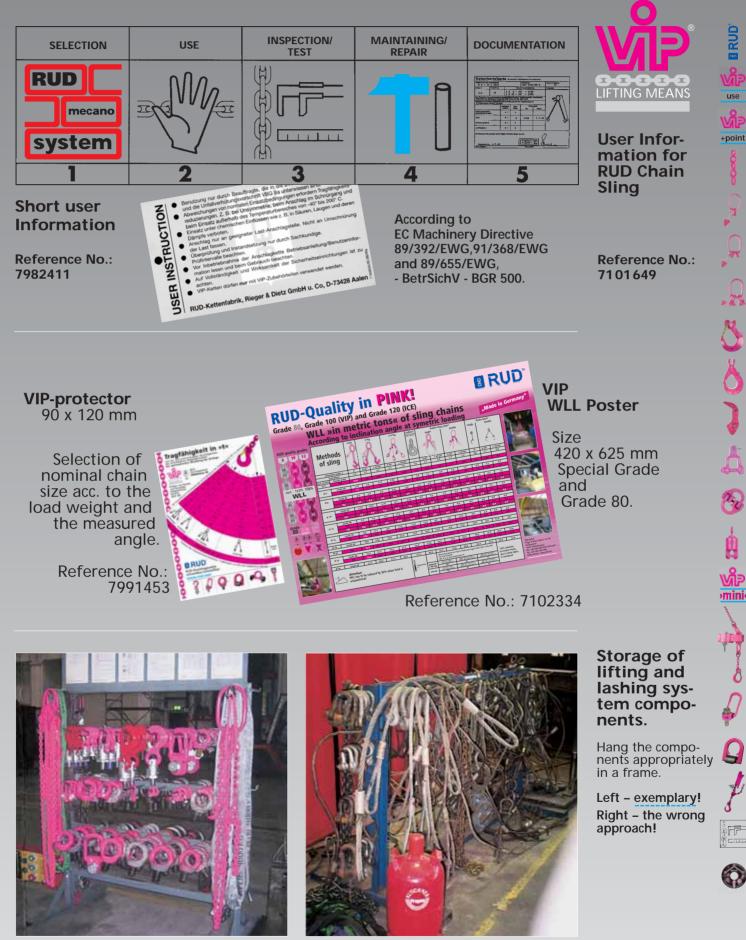
■ At regular intervals (maximum: one year) chain assemblies must be inspected by a competent person. Depending on the application circumstances, inspection might be necessary with in a time interval of less than one year. After a max. period of three years, chains must under go special inspection for the detection of cracks. After the occurence of a special incident, which could affect the WLL, chains should also be inspected by a competent person. In the case of VIP chains and components, proof loading instead of magnetic crack detection is insufficient. After the magnetic crack detection, probable cracks will be visible despite the pink powder coating. Use the crack detection fluid "Ferroflux".

■ Only RUD original spare parts should be used!

VIP-chains and components must be kept away from aggressive chemicals and acids. Surface treatment can only be undertaken by the manufacturer. Pay attention to the influence of temperatures (refer to the table on pages 5 and 7).

Please strictly adhere to the following regulations and specifications: BetrSichV – BGR 500, EN 818, EN 1677 and the RUD user instructions.

We are not liable for damages incurred as a result of ignoring the above regulations and specifications.


CD-USER-INFORMATION

With the RUD CD-ROM it is very easy to determine the correct VIP-lifting means!

New...

with VIP-Lashing Calculation Program and Lashing Protocol! Using the questionaire the most important data is entered, for example: working load, number of lifting points (or distance between lifting points), angle, shock load impact, sharp corners, influence of temperature etc. Automatically the correct VIP Chain Sling or lifting point will be determined within seconds. You can print out: Drawings, part lists, lashing protocols, calculation of the selected components.

RUD Ketten Rieger & Dietz GmbH u. Co. KG Friedensinsel 73432 Aalen/Germany Telefon +49 7361 504-1371-1314-1395 Telefax +49 7361 504-1460 info@rud.com www.rud.com

German engineering from the heart of Europe!

7102033/BA/07.08/Wa