

Description

1. Type: Universal Beam

2 Optimize the structure of lifting beam and the plate thickness.

3. use Indian standard sections instead of composite structure of plates.

4. Criterion for Optimization:

The optimized beam should be suitable to hold the load with F.O.S. more than 4 on UTS.

Simulation of Universal Beam

Date: 18 November 2011 Designer: Solidworks Study name: Study 1 Analysis type: Static

Table of Contents

Description1
Loading Conditions 2
Model Information 3
Study Properties4
Units 4
Material Properties 5
Loads and Fixtures6
Mesh Information7
Resultant Forces
Study Results9
Conclusion & Recommendations: 13

Loading Conditions

Image-6

Comments:

Load = 40T

Model Information

	Model name Current Co	e: Universal Beam_3 nfiguration: Default	
Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Document Path
Cut-Extrude1	Solid Body	Mass:5384.05 lb Volume:19106.4 in^3 Density:0.281793 lb/in^3 Weight:5380.4 lbf	M:\Downloads\Rud\Final\3d universal beam\Universal Beam_3.SLDPRT

Study Properties

Study name	Study 1
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SolidWorks Flow Simulation	Off
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off
Result folder	M:\Downloads\Rud\Final\3d universal beam)

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Celsius
Angular velocity	Rad/sec
Pressure/Stress	N/mm^2 (MPa)

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	Plain Carbon Steel Linear Elastic Isotropic Max von Mises Stress 2.20594e+008 N/m ² 3.99826e+008 N/m ² 2.1e+011 N/m ² 0.28 7800 kg/m ³ 7.9e+010 N/m ² 1.3e-005 /Kelvin	SolidBody 1(Cut- Extrude1)(Universal Beam_3)
Curve Data:N/A			

Loads and Fixtures

Fixture name	F	ixture Image	Fixture Details			
Fixed-1				Entities: Type:	1 face Fixed	e(s) Geometry
Resultant Forces	Resultant Forces					
Componei	nts	X	Ŷ	Z		Resultant
Reaction for	ce(N)	0	0	0		1e-033
Reaction Mome	nt(N-m)	0	0	0		0

Load name	Load Image	Load Details		
Gravity-1		Reference: Values: Units:	Top Plane 0 0 -9.81 Sl	
Force-1		Entities: Reference: Type: Values:	4 face(s), 1 plane(s) Top Plane Apply force ,, -400000 N	

Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Curvature based mesh
Jacobian points	4 Points
Maximum element size	91.972 mm
Minimum element size	18.3944 mm
Mesh Quality	High

Mesh Information - Details

Total Nodes	324275
Total Elements	179368
Maximum Aspect Ratio	155.8
% of elements with Aspect Ratio < 3	83
% of elements with Aspect Ratio > 10	3.79
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:01:14
Computer name:	٥"

Model name: Universal Beam_3 Study name: Study 1 Mesh type: Solid mesh

Mesh Control Information:

Mesh Control Name	Mesh Control Image	Mesh Control Details
Control-1		Entities: 26 face(s) Units: mm Size: 22.993 Ratio: 1.5
Control-2		Entities: 544 edge(s) Units: mm Size: 25 Ratio: 1.5

Resultant Forces

Reaction Forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	Ν	-1349.35	424061	707.131	424063

Reaction Moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N-m	0	0	0	0

Study Results

Name	Туре	Min	Мах
Displacement1	URES: Resultant Displacement	0 mm	7.78383 mm

Analyzed with SolidWorks Simulation

Simulation of Universal Beam_3 9

FOS - Bottom View

Conclusion & Recommendations:

The Result shows that the Universal Beam can take up to 40T load and does satisfy over FOS 4.0

There are minor areas where FOS fails due to localization of load.

1) Top hinged Pin -> shows Yield Stress below 220 N/mm2.

This can be ignored since the material used is Forged and is much stronger than overall material taken for the test.

2. Certain areas showing FOS just below or nearly 4.0, can be strengthened by using 20mm stiffener plates.

3) Bottom pins on Lift assembly also showing small-localized stress areas falling below FOS 4.0.

To eliminate that, the pin diameter needs to be increased to 60mm.

4. Maximum deformation is about 7.78 mm.